Math, asked by SharmaShivam, 7 months ago

Discuss continuity of function f(x) at x=1 where

\text{f(x)} = \begin{cases} \dfrac{x-1}{e^{\left(\dfrac{1}{x-1}\right)}+1}} &, \text{if}\: x \neq 1\\\\0 &, \text{if}\: x = 1\end

Answers

Answered by sk181231
1

Answer:

discuss \: the \: continuity \: of \: the \: function \: f(x) \: defined \: by :

fx =  \frac{log(sec {}^{2}x) }{x \: sinx}

for \:  x \: ≠ \: 0

 = e \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: for \: x \:  = 0

at \: x \:  = 0

if \: the \: discontinuity \: is \: removable \: redifine \: the \: function

so ,  \: that \: it \: becomes \: continous

Attachments:
Answered by ItzDeadDeal
3

Answer:

\sf{\underline{\boxed{\green{\large{\bold{ Question}}}}}}

solve : \sf\sqrt { \dfrac{x}{x-1}} + \sqrt { \dfrac{ 1- x }{ x }} =2 \dfrac{1}{6}

⠀⠀

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}} </p><p>

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf\implies let \: \sqrt{ \dfrac{x}{x-1}}</p><p>

\sf\implies and\: \sqrt{\dfrac{ 1 - x} {x }} = \dfrac{1}{y}</p><p>

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given equation reduces to

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf\implies y + \dfrac{1}{y} = \dfrac{13}{6}

\sf\implies \dfrac{ y^2 + 1 } { y } = \dfrac{13}{6}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf\implies 6 ( y^2 + 1 ) = 13y

\sf\implies 6y^2 + 6 =

\sf\implies 6y^2 - 13y + 6 = 0

Fctorisation by middle term split

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

</p><p>\sf\implies 6y^2 -9y - 4y + 6 = 0

\sf\implies 3y ( 2y - 3 ) -2 ( 2y - 3 ) =

\sf\implies ( 3y - 2 ) ( 2y - 3 ) = 0</p><p>⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf\implies 3y - 2 = 0⟹3y−2=0

\sf \implies 3y = 2⟹3y=2

\sf\implies y = \dfrac{2}{3}⟹y=

3

2

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\blue{\large{\bold{ y = \dfrac{2}{3} }}}}}}

\sf\implies 2y - 3 = 0

\sf \implies 2y = 3</p><p>

\sf\implies y = \dfrac{3}{2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\blue{\large{\bold{ y = \dfrac{3}{2} }}}}}} </p><p>⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ y = \dfrac{3}{2} or \dfrac{2}{3} }}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

_________________________

\sf\implies when\: y = \dfrac{3}{2}

\sf\implies then \sqrt{\dfrac{x}{1 - x }} = \dfrac{3}{2}

Squaring both the sides

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf\implies \dfrac{x}{1 - x } = \dfrac{9}{4}

\sf\implies 4x = 9 - 9x

\sf\implies 9x + 4x = 9

\sf\implies 13x = 9

\sf\implies x =\dfrac{9}{13}

</p><p>\sf{\underline{\boxed{\blue{\large{\bold{ x = \dfrac{9}{13 } }}}}}} </p><p>⠀⠀⠀

\sf\implies when\: y = \dfrac{2}{3}

\sf\implies then \sqrt{\dfrac{x}{1-x }} = \dfrac{2}{3}</p><p>

Squaring both the sides ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf\implies \dfrac{x}{1 - x } = \dfrac{4}{9}

\sf\implies 9x = 4 - 4x

\sf\implies 9x + 4x

</p><p>\sf\implies 13x

\sf\implies x =\dfrac{4}{13}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\blue{\large{\bold{ x = \dfrac{4}{13 } }}}}}}

\sf{\underline{\boxed{\purple{\large{\bold{ x = \dfrac{9}{13} or \dfrac{4}{13} }}}}}} </p><p>

Similar questions