Geography, asked by raj7076, 6 months ago

Discuss how do sesmic waves suggest the layering of earth interior.[5 marks]​

Answers

Answered by KhanakJain
3

Answer:

Hope it will help you..

Explanation:

When an earthquake occurs the seismic waves (P and S waves) spread out in all directions through the Earth's interior. Seismic stations located at increasing distances from the earthquake epicenter will record seismic waves that have traveled through increasing depths in the Earth.

Seismic velocities depend on the material properties such as composition, mineral phase and packing structure, temperature, and pressure of the media through which seismic waves pass. Seismic waves travel more quickly through denser materials and therefore generally travel more quickly with depth. Anomalously hot areas slow down seismic waves. Seismic waves move more slowly through a liquid than a solid. Molten areas within the Earth slow down P waves and stop S waves because their shearing motion cannot be transmitted through a liquid. Partially molten areas may slow down the P waves and attenuate or weaken S waves.

When seismic waves pass between geologic layers with contrasting seismic velocities (when any wave passes through media with distinctly differing velocities) reflections, refraction (bending), and the production of new wave phases (e.g., an S wave produced from a P wave) often result. Sudden jumps in seismic velocities across a boundary are known as seismic discontinuities.

The Crust

Mohorovicic Seismic Discontinuity

Seismic stations within about 200 km of a continental earthquake (or other seismic disturbance such as a dynamite blast) report travel times that increase in a regular fashion with distance from the source. But beyond 200 km the seismic waves arrive sooner than expected, forming a break in the travel time vs. distance curve. Mohorovicic (1909) interpreted this to mean that the seismic waves recorded beyond 200 km from the earthquake source had passed through a lower layer with significantly higher seismic velocity.

This seismic discontinuity is now know as the Moho (much easier than "Mohorovicic seismic discontinuity") It is the boundary between the felsic/mafic crust with seismic velocity around 6 km/sec and the denser ultramafic mantle with seismic velocity around 8 km/sec. The depth to the Moho beneath the continents averages around 35 km but ranges from around 20 km to 70 km. The Moho beneath the oceans is usually about 7 km below the seafloor (i.e., ocean crust is about 7 km thick).

Similar questions