Discuss in detail different network topogy with illustration
Answers
Answer:
Network Topology refers to the layout of a network and how different nodes in a network are connected to each other and how they communicate. Topologies are either physical (the physical layout of devices on a network) or logical (the way that the signals act on the network media, or the way that the data passes through the network from one device to the next). This Webopedia Study Guide describes five of the most common network topologies.
Network Topology Checklist
Key Terms to Know
Mesh Topology
Star Topology
Bus Topology
Ring Topology
Tree Topology
Getting Started: Key Terms to Know
The following definitions will help you to better understand network topology:
Network
Topology
Node
Physical Topology
Logical Topology
1. Mesh Topology
Mesh Topology : In a mesh network, devices are connected with many redundant interconnections between network nodes. In a true mesh topology every node has a connection to every other node in the network. There are two types of mesh topologies:
Full mesh topology:
occurs when every node has a circuit connecting it to every other node in a network. Full mesh is very expensive to implement but yields the greatest amount of redundancy, so in the event that one of those nodes fails, network traffic can be directed to any of the other nodes. Full mesh is usually reserved for backbone networks.
Partial mesh topology: is less expensive to implement and yields less redundancy than full mesh topology. With partial mesh, some nodes are organized in a full mesh scheme but others are only connected to one or two in the network. Partial mesh topology is commonly found in peripheral networks connected to a full meshed backbone.
2. Star Topology
Star Topology : In a star network devices are connected to a central computer, called a hub. Nodes communicate across the network by passing data through the hub.
Main Advantage: In a star network, one malfunctioning node doesn't affect the rest of the network.
Main Disadvantage: If the central computer fails, the entire network becomes unusable.
3. Bus Topology
Bus Topology : In networking a bus is the central cable -- the main wire -- that connects all devices on a local-area network ( LAN ). It is also called the backbone . This is often used to describe the main network connections composing the Internet. Bus networks are relatively inexpensive and easy to install for small networks. Ethernet systems use a bus topology.
Main Advantage: It's easy to connect a computer or device and typically it requires less cable than a star topology.
Main Disadvantage: The entire network shuts down if there is a break in the main wire and it can be difficult to identify the problem if the network shuts down.
4. Ring Topology
Ring Topology : A local-area network ( LAN ) whose topology is a ring. That is, all of the nodes are connected in a closed loop. Messages travel around the ring, with each node reading those messages addressed to it.
Main Advantage: One main advantage to a ring network is that it can span larger distances than other types of networks, such as bus networks, because each node regenerates messages as they pass through it.
5. Tree Topology
Tree Topology : This is a "hybrid" topology that combines characteristics of linear bus and star topologies. In a tree network, groups of star-configured networks are connected to a linear bus backbone cable.
Main Advantage: A Tree topology is a good choice for large computer networks as the tree topology "divides" the whole network into parts that are more easily manageable.
Main Disadvantage: The entire network depends on a central hub and a failure of the central hub can cripple the whole network.
MARK IT AS BRAINLIST PLEASE
Explanation:
1) Mess
2) Star
3) Bus
4) Ring
5) Tree