Physics, asked by lazitanzeem, 6 months ago

discuss the application of diode as positive series clipper positively biased with ideal diode practical silicon diode

Answers

Answered by sameeradhote
1

Answer:

This clipping of the input signal produces an output waveform that resembles a flattened version of the input. For example, the half-wave rectifier is a clipper circuit, since all voltages below zero are eliminated.

But Diode Clipping Circuits can be used a variety of applications to modify an input waveform using signal and Schottky diodes or to provide over-voltage protection using zener diodes to ensure that the output voltage never exceeds a certain level protecting the circuit from high voltage spikes. Then diode clipping circuits can be used in voltage limiting applications.

We saw in the Signal Diodes tutorial that when a diode is forward biased it allows current to pass through itself clamping the voltage. When the diode is reverse biased, no current flows through it and the voltage across its terminals is unaffected, and this is the basic operation of the diode clipping circuit.

Although the input voltage to diode clipping circuits can have any waveform shape, we will assume here that the input voltage is sinusoidal. Consider the circuits below.

Positive Diode Clipping Circuits

positive diode clipping circuits

In this diode clipping circuit, the diode is forward biased (anode more positive than cathode) during the positive half cycle of the sinusoidal input waveform. For the diode to become forward biased, it must have the input voltage magnitude greater than +0.7 volts (0.3 volts for a germanium diode).

When this happens the diodes begins to conduct and holds the voltage across itself constant at 0.7V until the sinusoidal waveform falls below this value. Thus the output voltage which is taken across the diode can never exceed 0.7 volts during the positive half cycle.

During the negative half cycle, the diode is reverse biased (cathode more positive than anode) blocking current flow through itself and as a result has no effect on the negative half of the sinusoidal voltage which passes to the load unaltered. Thus the diode limits the positive half of the input waveform and is known as a positive clipper circuit.

Negative Diode Clipping Circuits

negative diode clipping circuits

Here the reverse is true. The diode is forward biased during the negative half cycle of the sinusoidal waveform and limits or clips it to –0.7 volts while allowing the positive half cycle to pass unaltered when reverse biased. As the diode limits the negative half cycle of the input voltage it is therefore called a negative clipper circuit.

Clipping of Both Half Cycles

diode clipping circuit

If we connected two diodes in inverse parallel as shown, then both the positive and negative half cycles would be clipped as diode D1 clips the positive half cycle of the sinusoidal input waveform while diode D2 clips the negative half cycle. Then diode clipping circuits can be used to clip the positive half cycle, the negative half cycle or both.

For ideal diodes the output waveform above would be zero. However, due to the forward bias voltage drop across the diodes the actual clipping point occurs at +0.7 volts and –0.7 volts respectively. But we can increase this ±0.7V threshold to any value we want up to the maximum value, (VPEAK) of the sinusoidal waveform either by connecting together more diodes in series creating multiples of 0.7 volts, or by adding a voltage bias to the diodes.

Answered by parshavshah2304
0

Explanation:

The Diode Clipper, also known as a Diode Limiter, is a wave shaping circuit that takes an input waveform and clips or cuts off its top half, bottom half or both halves together.

Similar questions