Math, asked by guptaananya2005, 11 days ago

Discuss the differentiability of function f(x) = x|x|.

Please explain properly.

Moderators, Stars and best users.​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\: \: f(x) = x |x|

We know,

 \red{\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:  |x|  = \begin{cases} &\sf{ - x \:  \: when \: x < 0} \\ \\  &\sf{ \:  \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}}

So,

 \red{\begin{gathered}\begin{gathered}\rm :\longmapsto\:\bf\:  x|x|  = \begin{cases} &\sf{ -  {x}^{2}  \:  \: when \: x < 0} \\ \\  &\sf{ \:  \:  {x}^{2}  \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}}

Now, to check the differentiability of function f(x), we have to check whether LHD = RHD at x = 0.

Consider, LHD

\rm :\longmapsto\:\displaystyle\lim_{x \to  {0}^{ - } } \frac{f(x) - f(0)}{x - 0}

\rm \:  =  \: \displaystyle\lim_{x \to  {0}^{ - } } \frac{ -  {x}^{2}  -0}{x}

\rm \:  =  \: \displaystyle\lim_{x \to  {0}^{ - } } \frac{ -  {x}^{2}}{x}

\rm \:  =  \: \displaystyle\lim_{x \to  {0}^{ - } }  (- x)

\rm \:  =  \: 0

So,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to  {0}^{ - } } \frac{f(x) - f(0)}{x - 0}  = 0 \: }}

Consider, RHD

\rm :\longmapsto\:\displaystyle\lim_{x \to  {0}^{  +  } } \frac{f(x) - f(0)}{x - 0}

\rm \:  =  \: \displaystyle\lim_{x \to  {0}^{ + } } \frac{{x}^{2}  -0}{x}

\rm \:  =  \: \displaystyle\lim_{x \to  {0}^{ + } } \frac{{x}^{2}}{x}

\rm \:  =  \: \displaystyle\lim_{x \to  {0}^{ + } }  x

\rm \:  =  \: 0

So,

\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\lim_{x \to  {0}^{ + } } \frac{f(x) - f(0)}{x - 0}  = 0 \: }}

Hence,

\rm \implies\:\boxed{ \tt{ \: f'(0) = 0 \: }}

\rm \implies\:f(x) = x |x| \: is \: differentiable \: everywhere.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions