Math, asked by madhav5245, 1 month ago

Discuss the differentiability of the function

f(x) =  {sin}^{ - 1} \frac{2x}{1 +  {x}^{2} }

Answers

Answered by Anonymous
2

PLEASE MARK AS BRAINLIEST

Attachments:
Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) =  {sin}^{ - 1}\bigg[\dfrac{2x}{1 +  {x}^{2} } \bigg]

On differentiating both sides, w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}f(x) =\dfrac{d}{dx}  {sin}^{ - 1}\bigg[\dfrac{2x}{1 +  {x}^{2} } \bigg]

We know,

\boxed{ \rm \:\dfrac{d}{dx} {sin}^{ - 1}x =  \frac{1}{ \sqrt{1 -  {x}^{2} } }}

So, using this, we get

\rm :\longmapsto\:f'(x) = \dfrac{1}{ \sqrt{1 -  {\bigg[\dfrac{2x}{1 + {x}^{2} } \bigg]}^{2} } }\dfrac{d}{dx}\bigg[\dfrac{2x}{1 +  {x}^{2} } \bigg]

We know,

\boxed{ \rm \:\dfrac{d}{dx} \frac{u}{v}  =  \frac{v\dfrac{d}{dx}u - u\dfrac{d}{dx}v}{ {v}^{2} } }

So, using this

\rm \:  = \dfrac{1}{ \sqrt{1 - \dfrac{ {4x}^{2} }{ {(1 +  {x}^{2}) }^{2} } } } \bigg[\dfrac{(1 +  {x}^{2})\dfrac{d}{dx}2x - 2x\dfrac{d}{dx}(1 +  {x}^{2})}{ {(1 +  {x}^{2} )}^{2} } \bigg]

We know,

\boxed{ \rm \:\dfrac{d}{dx}k = 0}

and

\boxed{ \rm \:\dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}

So, using this,

\rm \:  = \dfrac{1 +  {x}^{2} }{ \sqrt{ {(1 +  {x}^{2}) }^{2}  -  {4x}^{2} } }\bigg[\dfrac{(1 +  {x}^{2})2 - 2x(2x) }{ {(1 +  {x}^{2} )}^{2} } \bigg]

\red{\bigg \{ \because  \sqrt{ {x}^{2} }  =  |x| \:  \:  \: and \:  |1 +  {x}^{2} |  = 1 +  {x}^{2}  \bigg \}}

\rm \:  = \dfrac{1 }{ \sqrt{ {(1  - {x}^{2}) }^{2}} }\bigg[\dfrac{2 + 2{x}^{2} - {4x}^{2}  }{ {(1 +  {x}^{2} )}^{} } \bigg]

\rm \:  =  \: \dfrac{1}{ |1 -  {x}^{2} | }\bigg[\dfrac{2 -  {2x}^{2} }{1 +  {x}^{2} } \bigg]

\red{\bigg \{ \because \: \sqrt{ {x}^{2} }   =  |x| \bigg \}}

\rm \:  =  \: \dfrac{1}{ |(1 - x)(1 + x) | }\bigg[\dfrac{2(1 -  {x}^{2} )}{1 +  {x}^{2} } \bigg]

Now,

 \red{\rm :\longmapsto\:f'(x) \: exist \: iff \: (1 - x)(1 + x)  \: \ne \: 0}

\rm :\implies\:f'(x) \: exist \:  \forall \: x \:  \in \: R \:  -  \:  \{ - 1, \: 1 \}

\rm :\implies\:f(x) \: is \: differentiable \:  \forall \: x \:  \in \: R \:  -  \:  \{ - 1, \: 1 \}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions