Math, asked by varshithak2804, 1 year ago

discuss the nature of the roots of the equation x^2+7x+12 =0 ​

Answers

Answered by Sharad001
74

Question :-

  \red{\sf{discus \: the \: nature \: of \: roots \: of \: the \:}} \\  \green{ \sf{ equation \:  {x}^{2}  + 7x + 12 = 0}}

Answer :-

Roots are real

→ Roots are -4 and -3 .

Formula used :-

To check about nature of roots of any quadratic equation we have to find discriminate of that equation.

 \sf{ \red{discriminate} \:  =  \pink{ {b}^{2}  - 4ac}} \\

____________________________

Explanation :-

Given equation is ,

 \rightarrow \sf{{x}^{2}  + 7x + 12 = 0} \:  \:  \:  \:  \: ......(1) \\

We know that standard equation ,

 \rightarrow \sf{ a{x}^{2}  + bx + c = 0} \:  \:  \:  \: ........(2)

Comparing eq.(1) and (2) ,

We get,

 \implies  \sf{ a \:  = 1 \:,  \: b \:  = 7, \:  \: c \:  = 12}

Now using the given formula,

 \implies \:    \sf{{b}^{2}  - 4ac} \\  \\  \implies \:  {(7)}^{2}  - 4 \times 1 \times 12 \\  \\  \implies \: 49 - 48 \\  \\ \sf{ discriminate \:  = 1}

Discriminate (d) > 0 ,

Therefore the roots of this equation are real .

___________________________

To finding the roots of this equation ,

Solve by factorisation method ,

 \implies \sf{  {x}^{2}  + 4x + 3x + 12 = 0} \\  \\   \sf{\implies \: x(x + 4) + 3(x + 4) = 0} \\  \\  \implies \:  \sf{(x +  4)( x + 3) = 0} \\  \\ case \: (1) \\  \\  \rightarrow \sf{ x + 4 = 0 }\\ \\  \rightarrow  \boxed{\sf{ x \:  =  - 4}} \\  \\ case \: (2) \\  \\  \rightarrow \sf{ x + 3 = 0} \\  \\  \rightarrow  \boxed{\sf{  x \:  =  - 3}} \\

Roots of this equation are -4 and -3.

_____________________________

Similar questions