English, asked by HibuYami, 2 months ago

discuss the significance of the fall of constantinople​

Answers

Answered by Anonymous
7

Answer:

Fall of Constantinople, (May 29, 1453), conquest of Constantinople by Sultan Mehmed II of the Ottoman Empire. ... The fall of the city removed what was once a powerful defense for Christian Europe against Muslim invasion, allowing for uninterrupted Ottoman expansion into eastern Europe.

Explanation:

Hope this helps uh ☺

Gudnoon❣

Pls Flw me ಥ‿ಥ ಥ‿ಥ

Give thanks take thanks❣

✌ITZ AbUsiNg QuEeN ✌

Answered by kingstarhere
0

Explanation:

❄️ Question :-

l and m are two parallel lines intersected by another pair of parallel lines p and q. Show that ∆ABC =~ ∆CDA.

\begin{gathered} \\ \end{gathered}

❄️ Solution :-

✍️Given :- l and m are two parallel lines intersected by p and q.

✍️To prove :- We have to prove that ∆ABC =~ ∆CDA.

✍️Proof :-

In ∆ABC and ∆CDA,

AC = AC [Common side]

<CAB = <ACD [Alternative interior angles]

<ACB = <CAD [Alternative interior angles]

\green \mapsto↦ By ASA congruence rule,

∆ABC =~ ∆CDA.

✍️Hence proved !

\begin{gathered} \\ \end{gathered}

❄️ Question :-

\bf \frac{4+3 \sqrt{5} }{4-3 \sqrt{5} } + \frac{4-3 \sqrt{5} }{4+3 \sqrt{5} }4−354+35+4+354−35

Simplify this by rationalizing the denominator.

\begin{gathered} \\ \end{gathered}

❄️ Solution :-

Rationalizing both -

\mapsto \bf \frac{4+3 \sqrt{5} }{4-3 \sqrt{5} } \times \frac{4 + 3 \sqrt{5} }{4 + 3 \sqrt{5} }↦4−354+35×4+354+35

Using the identities, (a+b)²=a²+b²+2ab and (a-b)(a+b)=a²-b².

\implies \small \bf \dfrac{(4)²+(3 \sqrt{5}) ²+2(4)(3 \sqrt{5} )}{(4)²-(3 \sqrt{5)²} }⟹(4)²−(35)²(4)²+(35)²+2(4)(35)

\implies \bf \frac{16 + 45 + 24 \sqrt{5} }{16 - 45}⟹16−4516+45+245

\implies \bf \frac{61 + 24\sqrt{5} }{ - 29}⟹−2961+245

\mapsto\bf \frac{4 - 3 \sqrt{5} }{4 + 3 \sqrt{5} } \times \frac{4 - 3 \sqrt{5} }{4-3 \sqrt{5} }↦4+354−35×4−354−35

\implies \bf \frac{4 - 3 \sqrt{5} }{4 + 3 \sqrt{5} } \times \frac{4 - 3 \sqrt{5} }{4 - 3 \sqrt{5} }⟹4+354−35×4−354−35

\implies \Large \bf \frac{(4)²+(3 \sqrt{5})²-2(4)(3 \sqrt{5}) }{(4)²-(3 \sqrt{5})² }⟹(4)²−(35)²(4)²+(35)²−2(4)(35)

\implies \bf \frac{16+45 - 24 \sqrt{5} }{(4)² - (3 \sqrt{5})² }⟹(4)²−(35)²16+45−245

\implies \bf \frac{61-24 \sqrt{5} }{16-45}⟹16−4561−245

\implies \bf \frac{61 - 24 \sqrt{5} }{ - 29}⟹−2961−245

Solving them :-

\mapsto \bf \frac{61 + 24 \sqrt{5} }{ - 29} + \frac{61 - 24 \sqrt{5} }{ - 29}↦−2961+245

Similar questions