Physics, asked by parkerrichard873, 12 hours ago


Displacement of a body after time 't' sec is s= 2t² - t + 1 find i) velocity at 2 sec and acceleration to any time 't'​

Answers

Answered by AestheticSky
9

Given that,

  • S = 2t² - t + 1

To Find,

  • Velocity and acceleration.

Solution,

\\\footnotesize\quad\bullet\quad \boxed{\rm v = \dfrac{ds}{dt} }\bigstar \\

\\\footnotesize\quad\bullet\quad \boxed{\rm a = \dfrac{dv}{dt} }\bigstar \\

Calculation,

Finding velocity:

\\\footnotesize\quad\longrightarrow\quad \rm v = \dfrac{d}{dt} \bigg( 2t^{2} - t + 1 \bigg)\\

\\\footnotesize\quad\longrightarrow\quad \rm v = \dfrac{d}{dt} \bigg( 2t^{2}\bigg) - \dfrac{d}{dt}\bigg( t \bigg) + \dfrac{d}{dt} \bigg( 1 \bigg)\\

\\\footnotesize\quad\longrightarrow\quad \rm v = 2 \times 2 (t) - 1 + 0\\

\\\footnotesize\quad\longrightarrow\quad \rm v =  4t - 1 --- (i) \\

\\\footnotesize\quad\longrightarrow\quad \rm v_{(t = 2 s)} =  4(2) - 1 \\

\\\footnotesize\quad\therefore\quad \boxed{ \rm v_{(t = 2 s)} =  7 m/s }\bigstar \\

Finding Acceleration:

differentiate equation (i) w.r.t time (t)

\\\footnotesize\quad\longrightarrow\quad \rm a =  \dfrac{d}{dt} \bigg(4t - 1 \bigg) \\

\\\footnotesize\quad\longrightarrow\quad \rm a =  \dfrac{d}{dt} \bigg(4t \bigg) - \dfrac{d}{dt} \bigg(1 \bigg) \\

\\\footnotesize\quad\longrightarrow\quad \rm a = 4 - 0 \\

\\\footnotesize\quad\therefore\quad \boxed{\rm a = 4 m/s^{2}}\bigstar  \\

_________________________


Anonymous: Fabulous! ❤️
Similar questions