Physics, asked by rajputsumersingh88, 11 months ago

displacement of a body is S= at+bt2+ct3 find dimensions of a, b, c​

Answers

Answered by Anonymous
16

\bf{\underline{\underline{Given :}}}

\mathtt{S = at + bt^2 + ct^3 }

\mathtt{where,\: S\: \:is \: \:displacement}

\bf{\underline{\underline{To \:find :}}}

\mathtt{dimension\: \:of\: \: a,\: b,\: c}

\bf{\underline{\underline{We\: know\: that }}}

 \fbox{\mathtt{Displacement\: (S) = M^{0}L^{1}T^{0} }}

All the terms should have the same dimension

\mathtt{S = at}

\mathtt{\rightarrow L = a T}

\mathtt{\rightarrow a = \Large{\frac{L}{T}}}

\mathtt{\red{\rightarrow a = LT^{-1}}}\\ \\

\mathtt{S = bt^{2}}

\mathtt{\rightarrow L = b T^{2}}

\mathtt{\rightarrow b = \Large{\frac{L}{T^{2}}}}

\mathtt{\green{\rightarrow b = LT^{-2}}}\\ \\

\mathtt{S = ct^{3}}

\mathtt{\rightarrow L = c T^{3}}

\mathtt{\rightarrow c = \Large{\frac{L}{T^{3}}}}

\mathtt{\purple{\rightarrow c = LT^{-3}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Important dimensional formulas

\mathsf{\bigstar\: Distance (s) = Length\: (L) }

\mathsf{\bigstar\: Displacement = Length\: (L) }

\mathsf{\bigstar\: Time (t) = Time\: (T) }

\mathsf{\bigstar\: Weight = Mass\: (M) }

\mathsf{\bigstar\: Speed = \frac{Distance}{time} </p><p>=\: \frac{L}{T} \:\:or\: \:LT^{-1}}

\mathsf{\bigstar\: Velocity (v) = \frac{Displacement}{time} = \: \frac{L}{T} \:\: or\: \:LT^{-1}}

Similar questions