Physics, asked by shruti228211, 1 year ago

displacement x = tcube - 12t + 10, the acceleration of particle when velocity is zero is given by 1. 12units 2.2units 3. 10 units 4. 1 units​

Answers

Answered by Anonymous
78

Correct Question

Displacement of a particle is given as x(t) = t³ - 12t + 10,the acceleration of the particle when velocity is zero is :

(A) 12 m/s² ✓

(B) 2 m/s²

(C) 10 m/s²

(D) 1 m/s²

Solution

The correct option is (A) 12 m/s²

Given

The position of the particle is given as :

 \sf \: x(t) =  {t}^{3} - 12t + 10

To finD

Acceleration Of The Particle

\rule{300}{1}

Differentiating x w.r.t to t,we get velocity of the particle :

 \sf \: v(t) =  \dfrac{dx}{dt}  \\  \\  \longrightarrow \:  \sf \: v(t) =  \dfrac{d( {t}^{3}  - 12t + 10)}{dt}  \\  \\  \longrightarrow \:   \underline{ \boxed{\sf \: v(t) =( 3 {t}^{2}  - 12 )\:  \:  {ms}^{ - 1} }}

The velocity of the particle is zero

 \colon \implies\sf \: 3 {t}^{2}  - 12 = 0 \\  \\  \colon \:  \implies \:  \sf \: 3 {t}^{2}  = 12 \\  \\  \colon \:  \implies \:  \sf {t}^{2}  = 4 \\  \\  \colon \:  \implies \:  \sf \: t =  \pm \sqrt{4}

Time is always positive

 \large{ \colon \:  \implies \:   \boxed{ \boxed{\sf \: t = 2s}}}

\rule{300}{1}

Now,

Differentiating v w.r.t t,we get acceleration :

 \sf \: a(t) =  \dfrac{dv}{dt}  \\  \\  \longmapsto \:  \sf \: a(t) =  \dfrac{d( {3t}^{2}  - 12)}{dt}  \\  \\  \longmapsto \:  \underline{ \boxed{\sf \: a(t) = 6 {t}^{}  \:  \:  {ms}^{ - 2} }}

When t = 2s,

 \huge{ \longmapsto \:  \boxed { \boxed{ \sf \: a(t) = 12 \:  {ms}^{ - 2} }}}

\rule{300}{1}

\rule{300}{1}


Anonymous: Awesome
Brainly100: Great Answer
Anonymous: Perfect ♡
BraɪnlyRoмan: Great :D
Answered by Anonymous
72

\Large{\underline{\underline{\green{\mathfrak{Given :}}}}}

  • x(t) = t³ - 12t + 10

  • Velocity (v) is 0

_________________________

\Large{\underline{\underline{\blue{\mathfrak{To \: Find :}}}}}

  • Acceleration of Particle

_______________________

\Large{\underline{\underline{\red{\mathfrak{Solution :}}}}}

As we are given that,

\large{\underline{\boxed{\sf{x(t) \: = \: t^3 \: - \: 12t \: + \: 10}}}} \\ \\ \small{\underline{\sf{\gray{\dag \: \: \: \: \: \: Differentiate \: x \: with \: respect \: to \: t \: \: \: \: \: \: \dag}}}} \\ \\ \implies {\sf{v(t) \: = \: \dfrac{d(t^3 \: - \: 12t \: + \: 10)}{dt}}} \\ \\ \implies {\sf{v(t) \: = \: 3t^2 \: - \: 12}} \\ \\ {\huge{\underline{\boxed{\sf{v(t) \: = \: 3t^2 \: - \: 12}}}}}

___________________________

 \small{\underline{\gray{\sf{\dag \: \: \: \: \: \: As \: velocity \: of \: particle \: is \: zero \: \: \: \: \: \: \dag}}}} \\ \\ \implies {\sf{0 \: = \: 3t^2 \: - \: 12}} \\ \\ \implies {\sf{3t^2 \: = \: 12}} \\ \\ \implies {\sf{t^2 \: = \: \dfrac{12}{3}}} \\ \\ \implies {\sf{t^2 \: = \: 4}} \\ \\ \implies {\sf{t \: = \: \sqrt{4}}} \\ \\ \implies {\sf{t \: = \: 2s}} \\ \\ \huge{\underline{\boxed{\sf{t \: = \: 2s}}}}

___________________________

\small{\underline{\gray{\sf{\dag \: \: \: \: \: \: Differentiate \: v \: with \: respect \: to \: t \: \: \: \: \: \: \dag}}}} \\ \\ \implies {\sf{a(t) \: = \: \dfrac{d(3t^2 \: - \: 12)}{dt}}} \\ \\ \implies {\sf{a(t) \: = \: 6t}} \\ \\ \implies {\sf{a(t) \: = \: 6 \: \times \: 2}} \\ \\ \implies {\sf{a(t) \: = \: 12 \: ms^{-2}}} \\ \\ \huge{\underline{\boxed{\sf{a(t) \: = \: 12 \: ms^{-2}}}}}


Anonymous: Great !!
Brainly100: Amazing Answer!
Anonymous: Awesome
BraɪnlyRoмan: Wonderful :D
Anonymous: Great going xD
Similar questions