Math, asked by akoreapubg, 4 months ago

\displaystyle Substitute\; x=cos\alp, \alp\in[0: ;\: \pi ]Substitutex=cos\alp,\alp∈[0:;π]
\displaystyle Then\; |x+\sqrt{1-x^2}|=\sqrt{2}(2x^2-1)\Leftright |cos\alp +sin\alp |=\sqrt{2}(2cos^2\alp -1)Then∣x+
1−x
2


∣=
2

(2x
2
−1)\Leftright∣cos\alp+sin\alp∣=
2

(2cos
2
\alp−1)
\displaystyle |\N {\sqrt{2}}cos(\alp-\frac{\pi}{4})|=\N {\sqrt{2}}cos(2\alp )\Right \alp\in[0\: ;\: \frac{\pi}{4}]\cup [\frac{3\pi}{4}\: ;\: \pi]∣N
2

cos(\alp−
4
π

)∣=N
2

cos(2\alp)\Right\alp∈[0;
4
π

]∪[
4


;π]
1) \displaystyle \alp \in [0\: ;\: \frac{\pi}{4}]\alp∈[0;
4
π

]
\displaystyle cos(\alp -\frac{\pi}{4})=cos(2\alp )\dotscos(\alp−
4
π

)=cos(2\alp)…
2. \displaystyle \alp\in [\frac{3\pi}{4}\: ;\: \pi]\alp∈[
4


;π]
\displaystyle -cos(\alp -\frac{\pi}{4})=cos(2\alp )\dots−cos(\alp−
4
π

)=cos(2\alp)…



pls help​

Answers

Answered by niyajaliakbar
1

Answer:

asdfgjklqruppeqxvjlkfdzd you are not the intended recipient

Similar questions