Math, asked by dhgray43, 2 months ago

distance between points -5,-4 and 2, -1 on coordinate plane

Answers

Answered by MaheswariS
3

\underline{\textbf{Given:}}

\textsf{Points are (-5,-4) and (2,-1)}

\underline{\textbf{To find:}}

\textsf{The distance between the given two points}

\underline{\textbf{Solution:}}

\underline{\textsf{Distance formula:}}

\mathsf{The\;distance\;between\;(x_1,y_1)\;and\;(x_2,y_2)\;is}

\boxed{\mathsf{d=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}}

\underline{\textsf{Distance between the points (-5,-4) and (2,-1)}}

\mathsf{=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{=\sqrt{(-5-2)^2+(-4+1)^2}}

\mathsf{=\sqrt{(-7)^2+(-3)^2}}

\mathsf{=\sqrt{49+9}}

\mathsf{=\sqrt{58}\;units}

\therefore\mathsf{The\;distance\;between\;the\;given\;points\;is\;\sqrt{58}\;units}

\underline{\textbf{Find more:}}

P(5,-3) and Q(-7,y) and PQ=13 units, find y​  

https://brainly.in/question/15041779

Answered by pulakmath007
3

SOLUTION

TO DETERMINE

The distance between points (-5,-4) and (2, -1) on coordinate plane

CONCEPT TO BE IMPLEMENTED

For the given two points  \sf{A( x_1 , y_1) \:  \: and \:  \: B( x_2 , y_2)} the distance between the points

 =  \sf{ \sqrt{ {(x_2 -x_1 )}^{2}  + {(y_2 -y_1 )}^{2} } }

EVALUATION

Here the given points are (-5,-4) and (2, -1)

So the required distance between the given points

 \sf{ =  \sqrt{ {( - 5 - 2)}^{2}  +  {( - 4 + 1)}^{2} } \:  \:  \: unit }

 \sf{ =  \sqrt{ {( - 7)}^{2}  +  {( - 3)}^{2} } \:  \:  \: unit }

 \sf{ =  \sqrt{ 49 + 9 } \:  \:  \: unit }

 \sf{ =  \sqrt{ 58} \:  \:  \: unit }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the distance between the point P[-(11/3),5] and Q[-(2/3),5]is

https://brainly.in/question/14757917

2. Find the value of a, if the distance between the poinys A(-3 , -14) and B(a, -5) is 9 units

https://brainly.in/question/31582162

Similar questions