Math, asked by prealpha86811, 4 months ago

Distance between the points P( 5, -8) and Q( -7 ,-3) is... *

Answers

Answered by anishjishnu
0

Answer:

13

Step-by-step explanation:

Formula is d=√((x_2-x_1)²+(y_2-y_1)²)

x_1=5,x_2=-7,y_1=-8,y_2=-3

d=√((-7-5)²+(-3-(-8))²)

=√((-12)²+(5)²)

=√(144+25)=√169=13

Answered by ImperialGladiator
2

Given points :

P(5, -8)

Q(-7, -3)

Using the distance formula :

 \pink{ \sf \longrightarrow d =  \sqrt{({x}_{2}- {x}_{1} {)}^{2} +( {y}_{2} - {y}_{1} {)}^{2} }}

Here,

\sf \to x_1=  5 \\  \sf \to x_2 =  -7 \\  \sf \to y_1 = -8 \\  \sf \to y_2 = -3

\sf \longrightarrow d =  \sqrt { \{( - 7) -  { 5\}}^{2} + { \{ ( - 3) - ( - 8)\}}^{2} } \\

\sf \longrightarrow d = \sqrt{ \{ - 7 - 5  { \}}^{2}  +  \{  - 3 + 8 { \}}^{2} } \\

\sf \longrightarrow d = \sqrt{( - 1 {2}^{2}) +( {5}^{2})  }  \\

\sf \longrightarrow d = \sqrt{144 + 25}  \\

\sf \longrightarrow d = \sqrt{169}  \\

\sf \longrightarrow d = 13units \\

{ \underline{ \sf{ \therefore{The \: distance \: between \: the \:points \:  P(5, - 8) \: and \: Q( - 7 , - 3) \: is \: 13 \: units}}}}

Note behind :

  • While using the distance formula the x_1 and x_2 represents the coordinates of the first point.
  • And also the y_1 and y_2 represents the coordinates of the second point.
Similar questions