Math, asked by shivaaaay77, 4 months ago

Distance between two stations x and y is 778 km. A train covers the journey from x to y at the speed of 84 kmph and returns to x with the speed of 56 kmph. Find the average speed of the train (in kmph) for the whole journey.​

Answers

Answered by Anonymous
27

\color{grey}\underline{ \rm \large \: \: Question :- }

Distance between two stations x and y is 778 km. A train covers the journey from x to y at the speed of 84 kmph and returns to x with the speed of 56 kmph. Find the average speed of the train (in kmph) for the whole journey.

\color{grey}\underline{ \rm \large \: \: Given :- }

• Distance between two stations [x and y] = 778 km

• train covers the journey from x to y at the speed = 84 km/hr

• Then train returns to x with the speed = 56 km/ph

\color{grey}\underline{ \rm \large \: \: To \: Find :- }

• The average speed of the train .

\color{grey}\underline{ \rm \large \: \: Formula \: Used:- }

\: \: \: \: \boxed{ \blue{ \sf \star \: \: avarage \: speed =  \dfrac{2}{ \dfrac{1}{x} +  \dfrac{1}{y} } }}

\color{grey}\underline{ \rm \large \: \: Step \: By \: Step \: Solution:- }

Let's find the answer by applying the formula of avarage speed

\: \: \: \:  \: { \sf  :  \longrightarrow \: \: avarage \: speed =  \dfrac{2}{ \dfrac{1}{x} +  \dfrac{1}{y} } }

\: \: \: \:{ \sf  : \longrightarrow\: \: avarage \: speed =  \dfrac{2xy}{x + y} }

  • x = 84
  • y = 56

\: \: \: \:{ \sf  : \longrightarrow\: \: avarage \: speed =  \dfrac{2 \times 84 \times 56}{84+ 56} }

\: \: \: \:{ \sf  : \longrightarrow\: \: avarage \: speed =  \dfrac{2 \times  \cancel{84} \times 56}{ \cancel{140}} }

\: \: \: \:{ \sf  : \longrightarrow\: \: avarage \: speed =  \dfrac{2 \times  21\times 56}{ 35} }

\: \: \: \:{ \sf  : \longrightarrow\: \: avarage \: speed =  \dfrac{2 \times  3\times 56}{ 5} }

\: \: \: \:{ \sf  : \longrightarrow\: \: avarage \: speed =  \dfrac{ 336}{ 5} }

\: \: \: \:{ \sf  : \Longrightarrow\: \: avarage \: speed =  \red{ 67.2 \: km/hr} }

\color{grey}\underline{ \rm \large \: \: Answer :- }

\: \: \: \:{ \sf  \: \: avarage \: speed =  \green{ 67.2 \: km/hr} }


Anonymous: hope it's help you
llMrDevilll: good
shivaaaay77: thanks to both of you
llMrDevilll: your welcome :)
Anonymous: :)
Answered by llMrDevilll
9

The required average speed given by the formula,

Average speed=(2xy/x+y)km/hr

Where,

  • x=84 kmph
  • y=56kmph

Average speed= 2×84×56/84+56

=67.2kmph

Similar questions