Math, asked by nikhilkumar4150, 9 months ago

distance formula

Let the four vertices be A(1,1),B(-1,5),C(7,9),D(9,5). Find the sides AB, BC, CD, DA and the 2 diagonals AC and BD. Based
on the measurements tell what type of Quadrilateral is it.
Do it on a paper and upload here.
Your work
Assigned​

Answers

Answered by Nereida
3

Answer:

Given,

  • A (1, 1)
  • B (-1, 5)
  • C (7, 9)
  • D (9, 5)

To Find,

  • Distance AB
  • Distance BC
  • Distance CD
  • Distance AD
  • Distance AC (Diagonal)
  • Distance BD (Diagonal)
  • What type of Quadrilateral it is?

Formula,

\tt\underline{\bf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2}}}}

Solution –

  • Distance AB

\tt\underline{\bf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2}}}}

\leadsto\sf{\sqrt{{(-1-1)}^{2}+{(5-1)}^{2}}}

\leadsto\sf{\sqrt{{(-2)}^{2}+{(4)}^{2}}}

\leadsto\sf{\sqrt{4+16}}

\leadsto\sf\underline{\bf{\sqrt{20}=2\sqrt{5}\;units}}

\rule{100}1

  • Distance BC

\tt\underline{\bf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2}}}}

\leadsto\sf{\sqrt{{(7-(-1))}^{2}+{(9-5)}^{2}}}

\leadsto\sf{\sqrt{{(8)}^{2}+{(4)}^{2}}}

\leadsto\sf{\sqrt{64+16}}

\leadsto\sf\underline{\bf{\sqrt{80}=4\sqrt{5}\:units}}

\rule{100}1

  • Distance CD

\tt\underline{\bf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2}}}}

\leadsto\sf{\sqrt{{(9-7)}^{2}+{(5-9)}^{2}}}

\leadsto\sf{\sqrt{{(2)}^{2}+{(-4)}^{2}}}

\leadsto\sf{\sqrt{4+16}}

\leadsto\sf\underline{\bf{\sqrt{20}=2\sqrt{5}\:units}}

\rule{100}1

  • Distance DA

\tt\underline{\bf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2}}}}

\leadsto\sf{\sqrt{{(9-1)}^{2}+{(5-1)}^{2}}}

\leadsto\sf{\sqrt{{(8)}^{2}+{(4)}^{2}}}

\leadsto\sf{\sqrt{64+16}}

\leadsto\sf\underline{\bf{\sqrt{80}=4\sqrt{5}\:units}}

\rule{100}1

  • Diagonal AC

\tt\underline{\bf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2}}}}

\leadsto\sf{\sqrt{{(7-1))}^{2}+{(9-1)}^{2}}}

\leadsto\sf{\sqrt{{(6)}^{2}+{(8)}^{2}}}

\leadsto\sf{\sqrt{36+64}}

\leadsto\sf\underline{\bf{\sqrt{100}=10\:units}}

\rule{100}1

  • Diagonal BD

\tt\underline{\bf{\sqrt{{(x_2-x_1)}^{2}+{(y_2-y_1)}^{2}}}}

\leadsto\sf{\sqrt{{(9-(-1))}^{2}+{(5-5)}^{2}}}

\leadsto\sf{\sqrt{{(10)}^{2}+{(0)}^{2}}}

\leadsto\sf{\sqrt{100+0}}

\leadsto\sf\underline{\bf{\sqrt{100}=100\:units}}

\rule{100}1

Hence, we observe :-

  • Opposite sides equal
  • Diagonals equal

So, the quadrilateral is a Rectangle.

\rule{100}2

Similar questions