Math, asked by mohirevaibhavi, 4 months ago

distance of point (-3,4) from the origin is..........​

Answers

Answered by shristichhonkar
1

Answer:

its distance from origin is 3

please thenk me

mark me as A brainliest

Answered by Anonymous
1

\underline{\underline{\textsf{\maltese\:\: {\red{Given :}}}}}

• Points of origin = (x₁ , y₁) = (0,0)

• Another Point = (x₂ , y₂) = (-3,4)

\\

\underline{\underline{\textsf{\maltese\:\: {\red{Diagram :}}}}}

 \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\qbezier(0,0)(0,0)(0,6) \qbezier(0,0)(0,0)(-6,0)  \qbezier(0,0)(0,0)(0,-6) \qbezier(0,0)(0,0)(6,0) \put(4.5,-.3){\bf{+ X - Axis}} \put(-5.9,-.3){\bf{- X - Axis}} \put(-1,-6.5){\bf{- Y - Axis}} \put(-1,6.5){\bf{+ Y - Axis}}\put(3,3){\bf + , +} \put(-3,3){\bf{ - , +}}\put(3,-3){\bf + , -}\put(-3,-3){\bf - , -} \put(-1,8){\bf Cartesian Plane}\put(.1,-.3){\bf{(0,0) Origin}}\put(5.5,3){\framebox(2.7,.7)} \put(5.5,3){\bf@ BeBrainliest}\qbezier(0,0)(0,0)(-3,4) \put(-3,4){\bf(-3,4)}\end{picture}

\\

\underline{\underline{\textsf{\maltese\:\: {\red{Solution :}}}}}

In order to find the distance between two points we need to use the Distance Formula.

\\

D = √ (x₂ - x₁)² + (y₂ - y₁)²

D = √ (-3 - 0)² + (4 - 0)²

D = √(-3)² + 4²

D = √8 + 16

D = √25

D = 5 units

\\

∴ Distance of point (-3,4) from the origin is {\underline{\textbf{5 units}}}.

Attachments:
Similar questions