Math, asked by hemakhan2017, 5 months ago

DIU
rii) log(3x + 2) + log(3x - 2) = 5 log 2.​

Answers

Answered by Asterinn
4

=> log(3x + 2) + log(3x - 2) = 5 log 2

=> log(3x + 2)(3x - 2) = 5 log 2

=> log(3x + 2)(3x - 2) = log 2⁵

=> log(9x²- 4) = log 2⁵

Taking anti log both sides :-

=> (9x²- 4) = 2⁵

=> 9x²- 4 = 32

=> 9x² = 32 +4

=> 9x² = 36

=> x² = (36)/9

=> x² = 4

=> x = √4

=> x = ±2

but x cannot be negative.

Therefore , x = 2

Answer : 2

Additional Information :

\boxed{\boxed{\begin{minipage}{5cm}\displaystyle\circ\sf\ ^{a} log \ a= 1\\\\\circ \ ^{a}log \ 1 = 0 \\\\\circ \ ^{a ^{n}} log \ b^{m}= \dfrac{m}{n} \times\:^{a}log \ b \\\\\circ \ ^{a^{m}} \ log \ b^{m} = \ ^{a}log \ b \\\\\circ \ ^{a}log \ b = \dfrac{1}{^{b}log \ a} \\\\\circ \ ^{a}log \ b = \dfrac{^{m}log \ b}{^{m} log \ a} \\\\\circ \ a^{^{a} logb} = b \\\\\circ \ ^{a}log \ b + ^{a}log \ c = \ ^{a}log(bc) \\\\\circ \ ^{a}log \ b -\: ^{a}log \ c = \ ^{a}log \left( \dfrac{b}{c} \right) \\\circ \ ^{a}log \ b \:\cdot\: ^{a}log \ c = \ ^{a}log \ c \\\\\circ \ ^{a}log \left( \dfrac{b}{c} \right) = \ ^{a}log \left(\dfrac{c}{b}\right)\end{minipage}}}

Answered by mathdude500
2

Answer:

Question

  • Solve for x :- log(3x + 2) + log(3x - 2) = 5 log 2.

Answer

Given :-

  • log(3x + 2) + log(3x - 2) = 5 log 2.

To find :-

  • The value of x.

Formula used:-

\bf \: loga + logb = logab

\bf \: log( {x}^{y} )  = y log(x)

\bf \: {x}^{2}  -  {y}^{2}  = (x + y)(x - y)

\bf \: log(x)  \: is \: defined \: when \: x > 0

Solution :-

\bf \:log(3x + 2) + log(3x - 2) = 5 log 2.

\bf\implies \: log((3x + 2)(3x - 2))  =  log( {2}^{5} )

On comparing, we get

\bf\implies \: {9x}^{2}  - 4 = 32

\bf\implies \:9 {x}^{2}  = 32 + 4

\bf\implies \:9 {x}^{2}  = 36

\bf\implies \: {x}^{2}  = 4

\bf\implies \:x = 2

Similar questions