Physics, asked by debbarmaiskar, 5 months ago

Div. B = o. What do this differential
equation indicates?​

Answers

Answered by vinshultyagi
3

❏ GIVEN :

\begin{gathered}\\\end{gathered}

Area of the rhombus (a) = 225 cm²

Length of one diagonal (d) = 15 cm.

\begin{gathered}\\\end{gathered}

❏ TO FIND :

\begin{gathered}\\\end{gathered}

The length of the other diagonal.

\begin{gathered}\\\end{gathered}

❏ SOLUTION :

\begin{gathered}\\\end{gathered}

Suppose the other diagonal \bf\red{=x }

\begin{gathered}\\\end{gathered}

★══════════════════════★

✯ According to the formula :-

\begin{gathered}\\\end{gathered}

\huge \color{blue}{\boxed{ \boxed{ \sf \color{blue}{A = \dfrac{1}{2} \times D \times x }}}}

\begin{gathered}\\\end{gathered}

Where :

\begin{gathered}\\\end{gathered}

A = Area of the rhombus

D = Known diagonal of the rhombus

x = Unknown diagonal of the rhombus

\begin{gathered}\\\end{gathered}

➨Putting values :-

\begin{gathered}\\\end{gathered}

 \: \tt{225 = \dfrac{1}{2} \times 15x }

\: \tt{225 = \dfrac{15x}{2} }

\: \tt{225 \times 2 = 15x }

 \: \tt{450 = 15x }

 \: \tt{15x = 450 }

 \: \tt{x = \dfrac{ \cancel{450}^{ \red{30}}}{ \cancel{15}{ \red{_1}}} }

 \: \tt \pink{x = 30}

\begin{gathered}\\\end{gathered}

∴ The length of the other diagonal = 30 cm.

\begin{gathered}\\\end{gathered}

❏ ANSWER :

\begin{gathered}\\\end{gathered}

The length of the other diagonal of the rhombus is 30 cm.

\begin{gathered}\\\end{gathered}

★══════════════════════★

Similar questions