Math, asked by rahul6996, 1 year ago

divide 2-3i by 5-4i​

Answers

Answered by MaheswariS
8

\textbf{Given:}

\dfrac{2-3\,i}{5-4\,i}

\textbf{To find:}

\text{Simplified form of $\dfrac{2-3\,i}{5-4\,i}$}

\textbf{Solution:}

\text{Consider,}

\dfrac{2-3\,i}{5-4\,i}

\text{Multiply both numerator and denominator by $5+4\,i$}

=\dfrac{2-3\,i}{5-4\,i}{\times}\dfrac{5+4\,i}{5+4\,i}

=\dfrac{(2-3\,i)(5+4\,i)}{5^2-(4\,i)^2}

=\dfrac{10+8\,i-15\,i-12\,i^2}{25-16\,i^2}

\text{But}\bf\i^2=-1

=\dfrac{10-7\,i+12}{25-16\,i^2}

=\dfrac{22-7\,i}{25+16}

=\dfrac{22-7\,i}{41}

=\dfrac{22}{41}-\dfrac{7\,i}{41}

\textbf{Answer:}

\bf\,\dfrac{2-3\,i}{5-4\,i}=\dfrac{22}{41}-\dfrac{7\,i}{41}

Find more:

If a-bi/a+bi=1+i/1-i then,prove a+b=0

https://brainly.in/question/14173316

Express the complex number z = 5+i/2+3i in the form a + ib

https://brainly.in/question/6695271

Similar questions