Math, asked by chris24, 1 year ago

divide 2 x power 4 - 9 x cube + 5 x square + 3 x minus 8 by x square - 4 x + 1 and verify division algorithm​

Answers

Answered by cuteangel12
45

Answer:

refer the attachment for your answer .......

Attachments:
Answered by ashishks1912
10

GIVEN :

Divide the polynomial 2x^4 -9x^3 +5x^2 + 3x-8 by x^2 - 4 x + 1

TO VERIFY :

The Division Algorithm for the given polynomial.

SOLUTION :

Given that divide the polynomial 2x^4 -9x^3 +5x^2 + 3x-8 by x^2 - 4 x + 1

                                  ___________________

               x^2 - 4 x + 1 ) 2x^4 -9x^3 +5x^2 + 3x-8 ( 2x^2-x-1

                                     2x^4-8x^3+2x^2

                                __(-)__(+)___(-)_____________

                                          -x^3+3x^2+3x

                                          -x^3+4x^2-x

                                     __(+)___(-)___(+)____________

                                                   -x^2+4x-8

                                                   -x^2+4x-1

                                                __(+)_(-)__(+)___________

                                                                   -7

                                                   ____________________

∴ the quotient is 2x^2-x-1 and remainder is -7

Now we ca verify the Division Algorithm

The formula for  Division Algorithm is :

Dividend=quotient\times divisor+remainder

Substitute the values in the formula we get

2x^4 -9x^3 +5x^2 + 3x-8=x^2 - 4 x + 1\times (2x^2-x-1)+(-7)

=x^2(2x^2)+x^2(-x)+x^2(-1)-4x(2x^2)-4x(-x)-4x(-1)+1(2x^2)+1(-x)+1(-1)-7

=2x^4-x^3-x^2-8x^3+4x^2+4x+2x^2-x-1-7

Adding the like terms

=2x^4-9x^3+5x^2+3x-8

∴  2x^4-9x^3+5x^2+3x-8=2x^4-9x^3+5x^2+3x-8

Hence LHS = RHS

∴  the Division algorithm is verified.

Similar questions