Divide 20 into two parts such that twice the square of the smaller part is 16 less than the square
of the larger part.
only question no c
Answers
Step-by-step explanation:
Let the smaller part be x
Hence the larger part is (20 – x)
Given,
2(20 – x)^2 = x^2 + 16
⇒ 2(400 – 40x + x^2) = x^2 + 16
⇒ 800 – 80x + 2x^2 – x^2 – 16 = 0
⇒ x^2– 80x + 784 = 0
Solve this to get the value of x
ANSWER:
To Do(+Given):
- Divide 20 into 2 parts,
- 2*Square of smaller part = square of larger part -16
Solution:
Let the bigger part be x.
So, the smaller part will be (20 - x).
We are given that,
⇒ Twice the (smaller side)² = (larger side)² - 16.
So,
⇒ 2 * (20 - x)² = (x)² - 16
We know that, (a - b)² = a² + b² - 2ab. So,
⇒ 2 * (400 + x² - 40x) = x² - 16
⇒ 2x² - 80x + 800 = x² - 16
Transposing RHS to LHS,
⇒ 2x² - 80x + 800 - x² + 16 = 0
⇒ x² - 80x + 816 = 0
Using Middle term splitting,
⇒ x² - 12x - 68x + 816 = 0
⇒ x(x - 12) - 68(x - 12) = 0
⇒ (x - 12)(x - 68) = 0
⇒ x = 12 or 68
As none of the parts can be greater than 20,
⇒ x = 12
⇒ 20 - x = 20 - 12 = 8
So, the numbers are 12 and 8 respectively.
Verification:
We are given that,
⇒ 2 * (20 - x)² = (x)² - 16
Putting value of x = 12, and (20 - x) as 8.
So,
⇒ 2 * (8)² = (12)² - 16
⇒ 2 * 64 = 144 - 16
⇒ 128 = 128
As, LHS = RHS,
HENCE VERIFIED!!!