Math, asked by rais10229, 6 months ago

divide 240 into three parts so that one upon three of the first one upon 4 of the second and one upon 5 of the
third part are equal​

Answers

Answered by vikram991
95

\huge{\underline{\pink{\tt{Given,}}}}

  • Divide 240 into three such parts so that 1/3 of the first 1/4 of the second and 1/5 of the third part are equal.

\huge{\underline{\pink{\tt{To\:Find,}}}}

  • The First Part = ?
  • The Second Part = ?
  • The Third Part = ?

\huge{\underline{\pink{\tt{Solution,}}}}

\longrightarrow \sf{Suppose\:the\:first\:part\:be\: \boxed{\sf{a}}}

\sf{And,Second\:part\:be\: \boxed{\sf{b}}\:,Third\:part\:be\: \boxed{\sf{c}}}

\boxed{\underline{\red{\sf{Now,According\:to\:the\:Question :}}}}

\bigstar \boxed{\sf{a+b+c = 240}}....1)

\bigstar \boxed{\sf{\dfrac{1}{3}a = \dfrac{1}{4}b = \dfrac{1}{5}c}}

According to First Condition :-

\mapsto \sf{\dfrac{1}{3}a = \dfrac{1}{4}b}

\mapsto \boxed{\sf{a = \dfrac{3}{4}b}}...2)

According to Second Condition :-

\mapsto \sf{\dfrac{1}{4}b = \dfrac{1}{5}c}

\mapsto \boxed{\sf{b = \dfrac{4}{5}c}}...3)

\bigstar \boxed{\underline{\pink{\sf{Now,Put\:the\:Value\:of\:2\:and\:3\:Equation\: in\:1\:Equation}}}}

\longmapsto \sf{\dfrac{3}{4}b + \dfrac{4}{5}c + c = 240}

\longmapsto \sf{\dfrac{3}{4}b + \dfrac{4c + 5c}{5} = 240}

\longmapsto \sf{\dfrac{3}{4}b + \dfrac{9c}{5}  = 240}

Now, Put the Value of b :-

\longmapsto \sf{\dfrac{3}{4} \times \dfrac{4}{5} + \dfrac{9c}{5} = 240}

\longmapsto \sf{\dfrac{3}{5}c + \dfrac{9}{5}c = 240}

\longmapsto \sf{\dfrac{3c + 9c}{5} = 240}

\longmapsto \sf{12c = 1200}

\longmapsto \sf{c = \dfrac{1200}{12}}

\longmapsto \boxed{\sf{c = 100}}

Therefore,

\implies \sf{b = \dfrac{4}{5} c}

\implies \sf{b = \dfrac{4}{5} \times 100}

\implies \boxed{\sf{b = 80}}

Now, Find Value of a :-

\implies \sf{a = \dfrac{3}{4}b}

\implies \sf{a = \dfrac{3}{4} \times 80}

\implies \boxed{\sf{a = 60}}

\rule{200}2

Answered by Anonymous
51

\blue{\bold{\underline{\underline{Answer:}}}}

 \:\:

 \red{\underline \bold{To \: Find:}}

 \:\:

  • All the three parts

 \:\:

 \green{\underline \bold{Given :}}

 \:\:

  • Sum of the three part = 240

 \:\:

  •  \sf \dfrac { 1 } { 3 } (part 1) =  \sf \dfrac { 1 } { 4 } (part 2) =  \sf \dfrac { 1 } { 5 } (part 3)

 \:\:

\large{\orange{\underline{\tt{Solution :-}}}}

 \:\:

  • Let the 1st part be = x

  • Let the 2nd part be = y

  • Let the 3rd part be = z

 \:\:

 \purple{\underline \bold{According \: to \: the \ question :}}

 \:\:

\purple\longrightarrow  \bf \dfrac { 1 } { 3 } (x) = \dfrac { 1 } { 4 } (y) = \dfrac { 1 } { 5 } (z)

 \:\:

 \underline{\bold{\texttt{We know that :}}}

 \:\:

 \dag \bf \ x + y + z = 240 ------(1)

 \:\:

Here we will try to write the x and y part in term of z

 \:\:

 \sf \longmapsto \dfrac { 1 } { 3 } (x) = \dfrac { 1 } { 5 } (z) [ Given ]

 \:\:

 \rm\longmapsto x = \dfrac { 3 } { 5 } (z) ------(2)

 \:\:

 \sf\longmapsto \dfrac { 1 } { 4 } (y) = \dfrac { 1 } { 5 } (z) [ Given ]

 \:\:

 \rm \longmapsto y = \dfrac { 4 } { 5 } (z) ------(3)

 \:\:

 \underline{\bold{\texttt{Putting equation (2) \& (3) in (1)}}}

 \:\:

 \sf \dashrightarrow x + y + z = 240

 \:\:

 \bf \implies \dfrac { 3 } { 5 } (z) +  \dfrac { 4 } { 5 } (z) + z = 240

 \:\:

 \underline{\bold{\texttt{Taking LCM as 5}}}

 \:\:

 \sf \longmapsto \dfrac { 3z + 4z + 5z } { 5 } = 240

 \:\:

 \sf \longmapsto \dfrac { 12z } { 5 } = 240

 \:\:

 \sf \longmapsto \dfrac { z } { 5 } = \dfrac { 240 } { 12 }

 \:\:

 \sf \longmapsto z = 20 \times 5

 \:\:

 \red{\bold{z \ = \ 100}}

 \:\:

 \underline{\bold{\texttt{Putting z = 100 in (2)}}}

 \:\:

 \sf \longmapsto x = \dfrac { 3 } { 5 } (z)

 \:\:

 \sf \longmapsto x = \dfrac {  3 } { 5 } (100)

 \:\:

 \sf \longmapsto x = 3 \times 20

 \:\:

 \red{\bold{x \ = \ 60}}

 \:\:

 \underline{\bold{\texttt{Putting z = 100 in (3)}}}

 \:\:

 \sf \longmapsto y = \dfrac { 4 } { 5 } (z)

 \:\:

 \sf \longmapsto y = \dfrac { 4 } { 5 } (100)

 \:\:

 \sf \longmapsto y = 4 \times 20

 \:\:

 \red{\bold{y \ = \ 80}}

 \:\:

So,

 \:\:

  • x = 60

 \:\:

  • y = 80

 \:\:

  • z = 100

 \:\:

\rule{200}5

Similar questions