Math, asked by Dcsaini1972, 1 year ago

Divide 3x^3 - 8x^2+3x +2 by x^2-3x +2 and verify the division algorithm

Answers

Answered by krishnakant95
9

Enter a problem...

Pre-Algebra Examples

Popular Problems

 

Pre-Algebra

Divide (3x^3-5x^2-4x-8)/(2x^2+x)

Factor out of .

Tap for more steps...

Expand .

Tap for more steps...

Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .

++---

Divide the highest order term in the dividend by the highest order term in divisor .

++---

Multiply the new quotient term by the divisor.

++---+++

The expression needs to be subtracted from the dividend, so change all the signs in

++------

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

++--------

Pull the next terms from the original dividend down into the current dividend.

++---------

Divide the highest order term in the dividend by the highest order term in divisor .

-++---------

Multiply the new quotient term by the divisor.

-++-----------+

The expression needs to be subtracted from the dividend, so change all the signs in

-++---------++-

After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.

-++---------++---

The final answer is the quotient plus the remainder over the divisor.

Answered by arshikhan8123
2

Concept

In the division algorithm, when the number "a" is divided by the number "b", the quotient is "q", the remainder is "r", and a = bq + r. Where 0 ≤ r  This is also known as the "Euclidean Division Lemma". The division algorithm can be easily expressed as:

 Dividend = divisor x quotient + remainder

Given

We have given a polynomial 3x^3 - 8x^2+3x +2 which divided by another polynomial x^2-3x +2 .

Find

We are asked to prove the division algorithm of the given polynomial.

Solution

On dividing 3x^3 - 8x^2+3x +2 by x^2-3x +2 we get 3x+1 as quotient and no remainder.

According to division algorithm

Dividend=Divisor\times Quotient +Remainder ....(1)

Putting Dividend=3x^3 - 8x^2+3x +2 , \ Divisor = x^2-3x +2 ,\ Quotient = 3x+1 , \ Remainder=0

in equation (1) , we get

3x^3 - 8x^2+3x +2= (x^2-3x +2)(3x+1)+0

We need to prove LHS = RHS

RHS= (x^2-3x +2)(3x+1)+0\\=x^2(3x+1)-3x(3x+1)+2(3x+1)\\=3x^3+x^2-9x^2-3x+6x+2\\=3x^3-8x^2+3x+2

LHS = RHS

Hence , proved the division algorithm of the given polynoimal.

#SPJ2

Similar questions