divide 3x^4+4x^3+3x+1 by (x+1) and verify the relation P(x) = g(x) × q(x) + r(x)
Answers
Answer:
Step-by-step explanation:
Answer:
_________________
x+1 ) 3x^4 + 4x^3 + 3x + 1 ( 3x^3 + x^2 + x + 2
+ 3x^4 + 3x^3
- -
------------------------------------------
+ x^3 + 3x + 1
+ x^3 + x^2 +
-
---------------------------------------------
+ x^2 + 3x + 1
+ x^2 + 1x
- -
----------------------------------------------
+ 2x + 1
+ 2x + 2
- -
------------------------------------------------
- 1
------------------------------------------------
p(x) = g(x) × q(x) + r(x)
[ 3x^4 + 4x^3 + 3x 1 ] = [ x+1 ] × [ 3x^4 + 4x^3 + 3x + 1 ] + [ - 1 ]
= [ 3x^4 + 4x^3 + 3x + 2 ] + [ - 1 ]
= 3x^4 + 4x^3 + 3x + 1