divide 3x square-x cube -3x+5 by x-1-x square and verify the division algorithm
Answers
Answered by
0
Explanation:
Wehavep(x)=x
3
−3x
2
+5x−3
andg(x)=x
2
−2
Long division method :
x²-2)x³-3x²+5x-3(x-3
***** x³ + 0 -2x
______________
********* -3x²+7x-3
********* -3x²+ 0 +6
________________
Remainder ( 7x-9)
________________
Dividend p(x) = x³-3x²+5x-3,
Divisor g(x)= x²-2 ,
Quotient q(x)= x - 3 ,
Remainder r(x) = 7x - 9
\underline { \blue { Division \: Algorithm }}
DivisionAlgorithm
\boxed {\pink { Dividend = divisor \times quotient + Remainder }}
Dividend=divisor×quotient+Remainder
g(x) \times q(x) + r(x)g(x)×q(x)+r(x)
= (x^{2}-2)(x-3)+(7x-9)=(x
2
−2)(x−3)+(7x−9)
\begin{lgathered}= x^{2}(x-3)-2(x-3)+7x-9 \\= x^{3}-3x^{2}-2x+6+7x-9 \\= x^{3}-3x^{2}+5x-3\\= Dividened\end{lgathered}
=x
2
(x−3)−2(x−3)+7x−9
=x
3
−3x
2
−2x+6+7x−9
=x
3
−3x
2
+5x−3
=Dividened
Similar questions