Math, asked by suvanshmahajan4283, 11 months ago

Divide 3x3 + x2 +2x +5 by 3x -1 and verify the results with division algorithm

Answers

Answered by cjcriss
5

Let f(x) = 3x² - x³ - 3x + 5 and g(x) = x - 1 - x²

Long Division Method:

-x² + x - 1) -x³ + 3x² - 3x + 5(x - 2

                -x³ +  x²  - x

                 -------------------------

                           2x² -  2x  +  5

                           2x²  -  2x  +  2

                            ----------------------

                                               3

     

Verification:

Dividend = Divisor * Quotient + Remainder

                = (-x² + x - 1) - (x - 2) + 3

                = -x³ + x² - x +  2x² - 2x + 2 + 3

                = 3x² - x³ - 3x + 5

Read more on Brainly.in - https://brainly.in/question/9076828#readmore

Answered by stl1685jatin9
1

Note that the given polynomials are not in standard form. To carry out division, we first write both the dividend and divisor in decreasing orders of their degrees. So, dividend = –x3 + 3x2 – 3x + 5 and divisor = –x2 + x – 1.

Division process is shown above. We stop here since deg(3) = 0 < 2 = deg(–x2 + x – 1). So, quotient = x – 2, remainder = 3.

Now,

Divisor Quotient + Remainder=

(–x2 + x – 1) (x – 2) + 3

= –x3 + x2 – x + 2x2 – 2x + 2 + 3

= –x3 + 3x2 – 3x + 5

= Dividend

In this way, the division algorithm is verified.

Similar questions