Divide 3x⁴+5x³-7x²+2x+2 by x²+3x+1, and verify the divison algorithm.
Step-by-step explain it
follow me also for follow back
Answers
p(x) = 3x⁴+ 5x³- 7x² + 2x + 2
g(x) = x² + 3x + 1
r(x) = 0
q(x) = 3x² - 4x + 2
(refer attachment for division)
______________________
Division Algorithm = p(x) = g(x).q(x) + r(x)
______________________
Verification using division algorithm :-
p(x) = ( x²+3x+1 ) ( 3x² - 4x + 2 )
= 3x⁴ - 4x³ + 2x² + 9x³ - 12x² + 6x + 3x² - 4x + 2 + 0
= 3x⁴ + 5x³ - 7x²+ 2x + 2
Hence verified.
What is
`GIVEN :
The expression 3x^4+5x^3-7x^2+2x+2 divided by x^2+3x+1
TO FIND :
The quotient for the given expression by using Long Division Method.
SOLUTION :
Given that 3x^4+5x^3-7x^2+2x+2 divided by x^2+3x+1
Here by using the Long Division Method we have to find the quotient.
3x^2-4x+2
_________________________
x^2+3x+1 ) 3x^4+5x^3-7x^2+2x+2
3x^4+9x^3+3x2
_(-)__(-)___(-)_________
-4x^3-10x^2+2x
-4x^3-12x^2-4x
___(+)___(+)___(+)______
2x^2+6x+2
2x^2+6x+2
__(-)___(-)___(-)_______
0
__________________
Therefore the quotient when the given expression 3x^4+5x^3-7x^2+2x+2 divided by x^2+3x+1 is 3x^2-4x+2
∴ the quotient is 3x^2-4x+2