Math, asked by sangitarut, 3 days ago

Divide 5,000 into two parts such that the
simple interest on the first part for two years
at 9% per annum is equal to the simple
interest on the second part for 4 years at 8%
per annum.​

Answers

Answered by asfandyarchandiosaha
0

Answer:

Let 5000 divided into two parts x and y.

According to the question

⇒ x × (21/5) × (20/3) = 2 × y × (11/4) × 4

⇒ x/y = 22/28

⇒ x/y = 11/14

Suppose the ratio of x ∶ y = 11k ∶ 14k

⇒ 11k + 14k = 5000

⇒ 25k = 5000

⇒ k = 200

The difference between x and y = 14k – 11k

⇒ 3k

⇒ 3 × 200

⇒ 600

Answered by ssrajguru10
0

Answer:

Let the First Part be Rs. x and Second Part be Rs. (5,000 - x).

\begin{gathered}\bold{First \: Part} \begin{cases} \sf{Principal=Rs. x} \\ \sf{Rate=10\% \: p.a.} \\ \sf{Time=2 \: Yr.}\end{cases}\end{gathered}

FirstPart

Principal=Rs.x

Rate=10%p.a.

Time=2Yr.

\begin{gathered}\bold{Second \: Part} \begin{cases} \sf{Principal=Rs. (5,000 -x)} \\ \sf{Rate=20\% \: p.a.} \\ \sf{Time=3 \: Yr.}\end{cases}\end{gathered}

SecondPart

Principal=Rs.(5,000−x)

Rate=20%p.a.

Time=3Yr.

• According to Question Now ;

\leadsto\sf{SI_1 = SI_2}⇝SI

1

=SI

2

\leadsto\sf{\dfrac{PRT_1}{\cancel{100}}=\dfrac{PRT_2}{\cancel{100}}}⇝

100

PRT

1

=

100

PRT

2

Using the Values Now

\leadsto \sf{x \times 10 \times 2 = (5000 - x) \times 20 \times 3}⇝x×10×2=(5000−x)×20×3

\leadsto \sf{20x = 300000 - 60x}⇝20x=300000−60x

\leadsto \sf{20x + 60x= 300000}⇝20x+60x=300000

\leadsto \sf{80x = 300000 }⇝80x=300000

\leadsto \sf{x = \cancel\dfrac{300000}{80} }⇝x=

80

300000

\leadsto⇝ Rs. 3,750

• Second Part be :

⇒ Rs. (5,000 - x)

⇒ Rs. (5,000 - 3,750)

⇒ Rs. 1,250

\therefore∴ Rs. 3750 and Rs. 1250 is two different Part on which Simple Interest will be Equal.

Similar questions