Math, asked by atplani8, 1 month ago

Divide 56 in four parts in AP such that the ratio of the product of their extremes (1st and 4th) to the product of means (2nd and 3rd) is 5:6. ​

Answers

Answered by 12thpáìn
2

Let the four parts be a−3d,a−d,a+d,a+3d

Sum, 4a=56

a=14

{ \:  \:  \:  \:  \mapsto\sf \dfrac{(a-3d)(a+3d)}{(a-d)(a+d)}= \dfrac{5}{6} }

  • Using Identity (A+B)(A-B) = A²-B²

{ \:  \:  \:  \:  \mapsto\sf \dfrac{ {a}^{2} -  {(3d)}^{2}  }{ {a}^{2} -  {d}^{2}  }= \dfrac{5}{6} }

{ \:  \:  \:  \:  \mapsto\sf \dfrac{ {a}^{2} -  9 {d}^{2}   }{ {a}^{2} -  {d}^{2}  }= \dfrac{5}{6} }

{\:  \:  \:  \:  \mapsto\sf  6({a}^{2} -  9 {d}^{2})   = 5(   {a}^{2} -  {d}^{2})  }

{\:  \:  \:  \:  \mapsto\sf  6{a}^{2} -  54{d}^{2} = 5  {a}^{2} -  5{d}^{2}  }

{\:  \:  \:  \:  \mapsto\sf  6{a}^{2} -5  {a}^{2}  -  54{d}^{2}  +   5{d}^{2}=  0  }

{\:  \:  \:  \:  \mapsto\sf {a}^{2}  - 49{d}^{2} =  0  }

  • Putting the value of a

{\:  \:  \:  \:  \mapsto\sf {14}^{2}  - 49{d}^{2} =  0  }

{\:  \:  \:  \:  \mapsto\sf 196  - 49{d}^{2} =  0  }

{\:  \:  \:  \:  \mapsto\sf  - 49{d}^{2} =   - 196  }

{\:  \:  \:  \:  \mapsto\sf  {d}^{2} =    196   \div 49 }

{\:  \:  \:  \:  \mapsto\sf  {d}^{2} =    4 }

{\:  \:  \:  \:  \mapsto\sf  d =     \sqrt{4}  }

{\:  \:  \:  \:  \mapsto\sf  d =     \pm2 }

  • Numbers are 8,12,16,20.
Answered by twinklingstar19
1

Answer:

Let the four parts be a−3d,a−d,a+d,a+3d

Sum, 4a=56

a=14

{ \: \: \: \: \mapsto\sf \dfrac{(a-3d)(a+3d)}{(a-d)(a+d)}= \dfrac{5}{6} }↦

(a−d)(a+d)

(a−3d)(a+3d)

=

6

5

Using Identity (A+B)(A-B) = A²-B²

{ \: \: \: \: \mapsto\sf \dfrac{ {a}^{2} - {(3d)}^{2} }{ {a}^{2} - {d}^{2} }= \dfrac{5}{6} }↦

a

2

−d

2

a

2

−(3d)

2

=

6

5

{ \: \: \: \: \mapsto\sf \dfrac{ {a}^{2} - 9 {d}^{2} }{ {a}^{2} - {d}^{2} }= \dfrac{5}{6} }↦

a

2

−d

2

a

2

−9d

2

=

6

5

{\: \: \: \: \mapsto\sf 6({a}^{2} - 9 {d}^{2}) = 5( {a}^{2} - {d}^{2}) }↦6(a

2

−9d

2

)=5(a

2

−d

2

)

{\: \: \: \: \mapsto\sf 6{a}^{2} - 54{d}^{2} = 5 {a}^{2} - 5{d}^{2} }↦6a

2

−54d

2

=5a

2

−5d

2

{\: \: \: \: \mapsto\sf 6{a}^{2} -5 {a}^{2} - 54{d}^{2} + 5{d}^{2}= 0 }↦6a

2

−5a

2

−54d

2

+5d

2

=0

{\: \: \: \: \mapsto\sf {a}^{2} - 49{d}^{2} = 0 }↦a

2

−49d

2

=0

Putting the value of a

{\: \: \: \: \mapsto\sf {14}^{2} - 49{d}^{2} = 0 }↦14

2

−49d

2

=0

{\: \: \: \: \mapsto\sf 196 - 49{d}^{2} = 0 }↦196−49d

2

=0

{\: \: \: \: \mapsto\sf - 49{d}^{2} = - 196 }↦−49d

2

=−196

{\: \: \: \: \mapsto\sf {d}^{2} = 196 \div 49 }↦d

2

=196÷49

{\: \: \: \: \mapsto\sf {d}^{2} = 4 }↦d

2

=4

{\: \: \: \: \mapsto\sf d = \sqrt{4} }↦d=

4

{\: \: \: \: \mapsto\sf d = \pm2 }↦d=±2

Numbers are 8,12,16,20.

Similar questions