Math, asked by akash775, 8 months ago

Divide 5x³-13x²+21x-14 by (3-2x+x²) and verify the division algorithm​

Answers

Answered by Buta5146
0

Given f(x) = 5x^3 - 13x^2 + 21x - 14.

Given g(x) = 3 - 2x + x^2.

We need to divide f(x) by g(x).

5x - 3

---------------------------------

= > x^2 - 2x + 3) 5x^3 - 13x^2 + 21x - 14

5x^3 - 10x^2 + 15x

---------------------------------

-3x^2 + 6x - 14

- 3x^2 + 6x - 9

-----------------------------------

-5.

Here,

Dividend = 5x^3 - 13x^2 + 21x - 14

Divisor = 3 - 2x + x^2

Quotient = 5x - 3

Remainder = -5

Division Algorithm:

Dividend = Divisor * Quotient + Remainder

= (3 - 2x + x^2) * (5x - 3) + (-5)

= 15x - 9 - 10x^2 + 6x + 5x^3 - 3x^2 - 5

= 5x^3 - 13x^2 + 21x - 14.

LHS = RHS

hope it helps you plz mark me as a brainlist and plz follow me if you follow me then I will definitely follow you

Answered by Anonymous
1

Answer:

Step-by-step explanation:

Given f(x) = 5x^3 - 13x^2 + 21x - 14.

Given g(x) = 3 - 2x + x^2.

We need to divide f(x) by g(x).

                           5x - 3

                         ---------------------------------

= > x^2 - 2x + 3) 5x^3 - 13x^2 + 21x - 14

                          5x^3 - 10x^2 + 15x

                          ---------------------------------

                                      -3x^2 + 6x - 14

                                      - 3x^2 + 6x - 9

                           -----------------------------------

                                                            -5.

Here,

Dividend = 5x^3 - 13x^2 + 21x - 14

Divisor = 3 - 2x + x^2

Quotient = 5x - 3

Remainder = -5

Division Algorithm:

Dividend = Divisor * Quotient + Remainder

                = (3 - 2x + x^2) * (5x - 3) + (-5)

                = 15x - 9 - 10x^2 + 6x + 5x^3 - 3x^2 - 5

                = 5x^3 - 13x^2 + 21x - 14.

LHS = RHS

Hope this helps!

Similar questions