Math, asked by aadityapal95, 8 months ago

Divide:
(6+x-4x^2+x^3)by(x-3

Answers

Answered by Anonymous
0

this is answer of question

Attachments:
Answered by raxit2025
0

Answer:

x^2-x-2

Step-by-step explanation:

as per the question:

\left(\begin{array}{ccc}\underline{6+x-4x^2+x^3}\\x-3\end{array}\right)\\=\left(\begin{array}{ccc}\underline{x^3-4x^2+x+6}\\x-3\end{array}\right)

[rearranging]

In~~\left(\begin{array}{ccc}\underline{x^3-4x^2+x+6}\\x-3\end{array}\right),factorize ~x^3-4x^2+x+6

this gives:

x^3-4x^2+x+6\\=x^3+x^2-5x^2-5x+6x+6\\=x^2(x+1)-5x(x+1)+6(x+1)\\=(x^2-5x+6)(x+1)\\=(x^2-3x-2x+6)(x+1)\\=[x(x-3)-2(x-3)](x+1)\\=(x-2)(x-3)(x+1)

on substitution:

\left(\begin{array}{ccc}\underline{(x-2)(x-3)(x+1)}\\x-3\end{array}\right)\\=(x-2)(x+1)\\=x^2-x-2

Similar questions