Math, asked by getkoushik76, 3 months ago

Divide 61 into two parts so that thrice the smaller part equals 3 more than twice the
bigger part

Answers

Answered by Singhjitesh
0

Answer:

y=36

x=25

Step-by-step explanation:

let the smaller part be x

let the bigger part be y

given,

x+y=61

3x=2y+3

x=61-y

putting it in the other eqn,

3(61+y)=2y+3

solving the above, we get

y=36

x=25

Answered by belwaldeepak123
0

Let the smaller number be x.

So the larger number will be (3x–3)/2.

Both numbers will add up to 61.

Hence the equation will be:—

 \large{ \tt{ \frac{3x - 3}{2} + x = 61 }}

 \large{ \tt{ \frac{3x - 3 + 2x}{2} = 61 }}

  \large \tt{5x - 3 = 122}

 \large{ \tt{ 5x = 125 }}

 \large \tt{x =  \frac{125}{5} }

 \large \tt{x = 25}

The smaller number is 25

The larger number will be:—

 \large \tt{ \longrightarrow \: \frac{3x - 3}{2} }

 \large \tt{ \longrightarrow \: \frac{3 \times 25- 3}{2} }

 \large \tt{ \longrightarrow \: \frac{75- 3}{2} }

 \large \tt{ \longrightarrow \: \frac{72}{2} }

 \huge { \red{\tt{ \Longrightarrow \: 36}}}

The larger number is 36

.

.

.

.

.

.

.

  \large{ \red{ \tt{\therefore \: {the \: larger \: number \: is \: 36 \: and \: the \: smaller \: number \: is \: 25}}}}

Similar questions