Divide -6x^4+5x^2+1+11x by 2x^2+1 and write down the quotient and the remainder. Also verify your answer
Answers
we have to find the quotient and remainder, if -6x⁴ + 5x² + 1 + 11x is divided by 2x² + 1.
solution :
2x² + 1)-6x⁴ + 5x² + 11x + 1(-3x² + 4
-6x⁴ - 3x²
---------------------------
8x² + 11x + 1
8x² + 4
-------------------------------------------
11x - 3
therefore quotient is -3x² + 4 and remainder is 11x - 3.
verification : Euclid lemma , a = bq + r , 0 ≤ r < b
a = -6x⁴ + 5x² + 11x + 1
b = 2x² + 1
q = -3x² + 4
r = 11x - 3
LHS = a = -6x⁴ + 5x² + 11x + 1
RHS = bq + r = (2x² + 1)(-3x² + 4) + (11x - 3)
= -6x⁴ + 8x² - 3x² + 4 + 11x - 3
= -6x⁴ + 5x² + 11x + 1
Hence LHS = RHS
Answer:
solution :
2x² + 1)-6x⁴ + 5x² + 11x + 1(-3x² + 4
-6x⁴ - 3x²
---------------------------
8x² + 11x + 1
8x² + 4
-------------------------------------------
11x - 3
therefore quotient is -3x² + 4 and remainder is 11x - 3.
verification : Euclid lemma , a = bq + r , 0 ≤ r < b
a = -6x⁴ + 5x² + 11x + 1
b = 2x² + 1
q = -3x² + 4
r = 11x - 3
LHS = a = -6x⁴ + 5x² + 11x + 1
RHS = bq + r = (2x² + 1)(-3x² + 4) + (11x - 3)
= -6x⁴ + 8x² - 3x² + 4 + 11x - 3
= -6x⁴ + 5x² + 11x + 1
Hence LHS = RHS