Math, asked by poojamehta0502, 6 months ago

divide by factor method : x⁴ -1/x²-1​

Answers

Answered by mysticd
4

 \frac{x^{4} - 1 }{x^{2} - 1 }

 = \frac{(x^{2})^{2} - 1^{2} }{x^{2} - 1 }

/* By algebraic identity */

 \boxed{ \pink{ a^{2} - b^{2} = ( a + b )( a - b ) }}

 = \frac{ (x^{2} + 1)\cancel {(x^{2} - 1)} }{\cancel { (x^{2} - 1) }}

 = x^{2} + 1

Therefore.,

 \red{ \frac{x^{4} - 1 }{x^{2} - 1 } }\green { = x^{2} + 1 }

•••♪

Answered by Anonymous
10

Given Equation :-

\sf\blue{ \dfrac{ {x}^{4} - 1 }{ {x}^{2}  - 1} }

Solution :-

Take Out Common Factors.

\implies\sf {\dfrac{ { {(x}^{2} )}^{2}  - 1}{ {x}^{2} - 1 } }

Now, Use Identity :- a² - b² = (a + b)(a - b).

\implies\sf{ \dfrac{( {x}^{2}  + 1)(\cancel{{x}^{2} - 1) }}{\cancel{ {x}^{2} - 1 } }}

\sf\implies\red{  {x}^{2}  + 1}

Therefore, The Required Answer :-

\sf{ \dfrac{ {x}^{4} - 1 }{ {x}^{2}  - 1} } = \sf\green{  {x}^{2}  + 1}

Similar questions