Math, asked by astha2106, 6 months ago

divide by long division method and check your answer 9x^4 +15x^3 -2x^2 +7x -8 by 3x-2​

Answers

Answered by khushikhatri1
10

Answer:

here is your answer

hope this will help you.

Attachments:
Answered by hukam0685
2

The result of long division is:

Quotient : \bf 3{x}^{ 3}  + 7{x}^{2}   + 4x + 5

Remainder : 2

Given:

  • (9x^4 +15x^3 -2x^2 +7x -8)  \div  (3x-2)

To find:

  • Perform long division and check your result.

Solution:

Step 1:

Perform division.

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:3x - 2 \: ) \: 9x^4 +15x^3 -2x^2 +7x -8 (3{x}^{ 3}  + 7{x}^{2}   + 4x + 5 \\  \:  \:  \:  \:  \:  \: 9 {x}^{4}  \: \:  \:  - 6 {x}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:\\ ( - )  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ( + ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  -  -  -  -  -  -  -  -  -   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \\ 21 {x}^{3}   - 2{x}^{2}  + 7x \\ 21 {x}^{3}  \:  \:  \: - 14 {x}^{2} \:  \:  \:  \:  \:  \:  \\ ( - ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (   +  ) \:  \:  \:  \:  \:  \:  \:  \:  \\  \:  -  -  -  -  -  -  -  -  \\ 12 {x}^{2}     + 7x - 8 \\ 12 {x}^{2}  - 8x \:  \:  \:  \:  \:  \\ ( - ) \:  \: ( + ) \:  \:  \:  \:  \:  \:  \:  \\  -  -  -  -  -  -  -   \\ 15x - 8 \\ 15x - 10 \\ ( - ) \:  \: ( + ) \\  -  -  -  -  -  \\ 2 \\  -  -  -  -  -  \\

Thus,

Quotient of division is 3{x}^{ 3}  + 7{x}^{2}   + 4x + 5

Remainder is 2.

Step 2:

Verification can be done using division algorithm.

Divisor = Dividend×Quotient + remainder

(9x^4 +15x^3 -2x^2 +7x -8) = (3x  - 2)(3 {x}^{3}  + 7 {x}^{2}  + 4x + 5) + 2 \\

If LHS = RHS, then division is correct.

Take RHS

  (3x  - 2)(3 {x}^{3}  + 7 {x}^{2}  + 4x + 5) + 2 \\

or

 = 9 {x}^{4}  + 21 {x}^{3}  + 12x^2 + 15x - 6 {x}^{3}  - 14 {x}^{2} - 8x - 10 + 2 \\

or

= 9 {x}^{4}  + 15 {x}^{3}   - 2 {x}^{2}    +  7x  - 8 \\

LHS= RHS

Thus,

Division is correct.

Learn more:

1) divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following 1) p(x)=a...

https://brainly.in/question/40399222

2) using long division method divide the following polynomials by a binomial and check your answer p raised to power 4 + p ...

https://brainly.in/question/6311029

Similar questions