Math, asked by abedhashimi8642, 11 months ago

Divide cube root of 128 by fifth root of 64

Answers

Answered by adityaaryaas
23

Answer:

Please find the attached image.

Step-by-step explanation:

Attachments:
Answered by pinquancaro
20

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=\sqrt[15]{131072}

Step-by-step explanation:

Given : Expression cube root of 128 by fifth root of 64.

To find : Divide the expression ?

Solution :

Writing the expression as,

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}

First we factories the numbers,

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=\dfrac{\sqrt[3]{2\times 2\times 2\times 2\times 2\times 2\times 2}}{\sqrt[5]{2\times 2\times 2\times 2\times 2\times 2}}

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=\dfrac{\sqrt[3]{2^3\times 2^3\times 2}}{\sqrt[5]{2^5\times 2}}

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=\dfrac{2\times 2\sqrt[3]{2}}{2\sqrt[5]{2}}

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=\dfrac{2(2)^{\frac{1}{3}}}{(2)^{\frac{1}{5}}}

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=\dfrac{(2)^{\frac{4}{3}}}{(2)^{\frac{1}{5}}}

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=(2)^{\frac{4}{3}-\frac{1}{5}}

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=(2)^{\frac{20-3}{15}}

\dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=(2)^{\frac{17}{15}}

Therefore, \dfrac{\sqrt[3]{128}}{\sqrt[5]{64}}=\sqrt[15]{131072}

#Learn more

Divide the squer root of 64 by the cube of 2

https://brainly.in/question/1357224

Similar questions