divide p(x) by q(x) and check your answer using division algorithm (dividend)=divisor×quotient +remainder p(x)=6x^5+4x^4-27x^3-7x^2-27x-6,q(x)=2x^2-3
Answers
GIVEN :
The polynomials and ,
TO DIVIDE :
The polynomials p(x) by q(x) and check your answer using division algorithm
SOLUTION :
From the given polynomials and ,
Divide the p(x) by q(x) by using the Long Division Method
________________________________
)
__(-)___(-)___(+)________
__(-)___(-)__(+)__________
__(+)____(-)____(-)_______
__(+)__(-)__(-)____
_______________
∴ the quotient is and remainder is
Now verify the Division Algorithm
Substitute the values we get
(by using the Distributive property)
( by adding the like terms)
∴
∴ Division Algorithm is verified.
Step-by-step explanation:
:
The polynomials p(x)=6x^5+4x^4-27x^3-7x^2-27x-6p(x)=6x
5
+4x
4
−27x
3
−7x
2
−27x−6 and ,q(x)=2x^2-3q(x)=2x
2
−3
:
The polynomials p(x) by q(x) and check your answer using division algorithm
:
From the given polynomials p(x)=6x^5+4x^4-27x^3-7x^2-27x-6p(x)=6x
5
+4x
4
−27x
3
−7x
2
−27x−6 and ,q(x)=2x^2-3q(x)=2x
2
−3
Divide the p(x) by q(x) by using the Long Division Method
3x^3+2x^2-9x-\frac{1}{2}3x
3
+2x
2
−9x−
2
1
________________________________
2x^2+0x-32x
2
+0x−3 ) 6x^5+4x^4-27x^3-7x^2-27x-66x
5
+4x
4
−27x
3
−7x
2
−27x−6
6x^5+0x^4-9x^36x
5
+0x
4
−9x
3
__(-)___(-)___(+)________
4x^4-18x^3-7x^24x
4
−18x
3
−7x
2
4x^4+0x^3-6x^24x
4
+0x
3
−6x
2
__(-)___(-)__(+)__________
-18x^3-x^2-27x−18x
3
−x
2
−27x
-18x^3+0x^2+27x−18x
3
+0x
2
+27x
__(+)____(-)____(-)_______
-x^2-54x-6−x
2
−54x−6
-x^2+0x+\frac{3}{2}−x
2
+0x+
2
3
__(+)__(-)__(-)____
-54x-6-\frac{3}{2}−54x−6−
2
3
_______________
∴ the quotient is 3x^3+2x^2-9x-\frac{1}{2}3x
3
+2x
2
−9x−
2
1
and remainder is -54x-6-\frac{3}{2}−54x−6−
2
3
Now verify the Division Algorithm
dividend=divisor\times quotient +Remainder dividend=divisor×quotient+remainder
Substitute the values we get
6x^5+4x^4-27x^3-7x^2-27x-6=2x^2-3\times (3x^3+2x^2-9x-\frac{1}{2})+(-54x-6-\frac{3}{2})6x
5
+4x
4
−27x
3
−7x
2
−27x−6=2x
2
−3×(3x
3
+2x
2
−9x−
2
1
)+(−54x−6−
2
3
) by using distribution
=6x^5+4x^4-18x^3-9x^3-x^2-9x^3-6x^2+27x+\frac{3}{2}-54x-6-\frac{3}{2}=6x
5
+4x
4
−18x
3
−9x
3
−x
2
−9x
3
−6x
2
+27x+
2
3
−54x−6−
2
3
by adding the same terms
=6x^5+4x^4-27x^3-7x^2-27x-6=6x
5
+4x
4
−27x
3
−7x
2
−27x−6
∴ 6x^5+4x^4-27x^3-7x^2-27x-6=6x^5+4x^4-27x^3-7x^2-27x-66x
5
+4x
4
−27x
3
−7x
2
−27x−6=6x
5
+4x
4
−27x
3
−7x
2
−27x−6
verified.