divide polynomial 3 x cube minus 2 X square + 5 x minus 5 by 3 X + 1 and verify division algorithm
Answers
Solution →
Let ,
=> f(x) = 3x³ - 2x² + 5x - 5
=> g(x) = 3x + 1
f(x) ÷ g(x) →
3x + 1) 3x³ - 2x² + 5x - 5 ( x²- x + 2
3x³ + x²
(-) (-)
________________
-3x² + 5x
-3x² - x
(+) (+)
________________
6x - 5
6x + 2
(-) (-)
__________________
- 7
=> Now ,
Reminder = -7
Quotient (Q) = x² - x + 2
We know that →
- Divisors × Quotient + Reminder = Dividend
So ,
Divisor × Quotient + Reminder
= (3x + 1) × (x² - x + 2) + (-7)
= 3x³ - 3x² + 6x + x² - x + 2 - 7
= 3x³ - 2x² + 5x -5 = Dividend
Hence , the Division algorithm is proved.
__________________________