Math, asked by ambiambi5758, 10 months ago

divide polynomial 3 x cube minus 2 X square + 5 x minus 5 by 3 X + 1 and verify division algorithm ​

Answers

Answered by Anonymous
5

Solution

Let ,

=> f(x) = 3x³ - 2x² + 5x - 5

=> g(x) = 3x + 1

f(x) ÷ g(x)

3x + 1) 3x³ - 2x² + 5x - 5 ( - x + 2

3x³ +

(-) (-)

________________

-3x² + 5x

-3x² - x

(+) (+)

________________

6x - 5

6x + 2

(-) (-)

__________________

- 7

=> Now ,

Reminder = -7

Quotient (Q) = - x + 2

We know that

  • Divisors × Quotient + Reminder = Dividend

So ,

Divisor × Quotient + Reminder

= (3x + 1) × ( - x + 2) + (-7)

= 3x³ - 3x² + 6x + - x + 2 - 7

= 3x³ - 2x² + 5x -5 = Dividend

Hence , the Division algorithm is proved.

__________________________

Mark as Brainliest !! ✨✨

Similar questions