Math, asked by XxCelestialStarXx, 2 months ago

Divide

p(x) =  {x}^{4}  -  {3x}^{2}  + 4x + 5 \\ g(x) =  {x}^{2}   + 1 - x
Write Remainder and quotient also.

No spam​

Answers

Answered by bhagyashreehappy123
1

it's helpful for you,∆. ∆

°

Attachments:
Answered by Anonymous
14

Answer:

\mathtt{SOLUTION:-}

\mathtt\green{ {x}^{2}  - x + 1) {x}^{4}  + 0. {x}^{3} -  {3x}^{2}  + 4x + 5( {x}^{2} + x - 3  } \\

 \mathtt \green{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: {x}^{4}  -  {x}^{3}  \:  \:  \:  \: +  {x}^{2}  }

_______________________________________

 \mathtt \green{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { - x}^{3}   \:  \:  \:  \:  \: -     {4x}^{2} + 4x + 5 }

 \mathtt \green{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    { - x}^{3}  \:  \:  \:  \:  \:   \: -  {x}^{2} \:  \:   + x  }

_______________________________________

 \mathtt \green{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { - 3x}^{2}  \:  \:  + 3x  + 5}

 \mathtt \green{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { - 3x}^{2}  \:  \:  + 3x   - 3}

_______________________________________

 \mathtt \green{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 0}

_______________________________________

Similar questions