Math, asked by adarsh4656, 1 month ago

Divide
 {x}^{3}  - 3 {x}^{2} + 5x - 3
by
x - 2
and find the quotient and remainder.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:Dividend \:  \: f(x) =  {x}^{3} -  {3x}^{2}  + 5x - 3

and

\rm :\longmapsto\:Divisor \:  \: g(x) = x - 2

We have to find,

  • Quotient

and

  • Remainder

Using Long Division Method, we get

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: {x}^{2} - x  + 3\:\:}}}\\ {\underline{\sf{x - 2}}}& {\sf{\: {x}^{3}  -  {3x}^{2} + 5x - 3\:\:}} \\{\sf{}}& \underline{\sf{-  {x}^{3} +2{x}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:\:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: -  {x}^{2} +5 x - 3\:  \:  \:  \:   \:  \:  \:  \:\:}} \\{\sf{}}& \underline{\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   - {x}^{2}  - 2x  \:  \:  :\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  3x - 3 \:\:}} \\{\sf{}}& \underline{\sf{\: \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: \: - 3x + 6\:\:}} \\ {\underline{\sf{}}}& {\sf{\:\: \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  3\:\:}}  \end{array}\end{gathered}\end{gathered}\end{gathered}

Hence,

\rm :\longmapsto\:Quotient =  {x}^{2}  - x + 3

and

\rm :\longmapsto\:Remainder = 3

Verification : -

We know,

\rm :\longmapsto\:Dividend = Divisor \times Quotient + Remainder

So,

Consider,

\rm :\longmapsto \: Divisor \times Quotient + Remainder

\rm \:  =  \:  \: (x - 2)( {x}^{2} - x + 3) +  3

\rm \:  =  \:  \: x( {x}^{2} - x + 3) - 2( {x}^{2} - x + 3)  +  3

\rm \:  =  \:  \:{x}^{3} -  {x}^{2}  + 3x- 2{x}^{2}  + 2 x - 6 +  3

\rm \:  =  \:  \:  {x}^{3}  -  {3x}^{2}  + 5x - 3

\rm \:  =  \:  \: Dividend

Hence, Verified

Similar questions