divide the expression (m +3) (m ^4-16) by (m ^3 +2m ^2 +4m+8).if the quotient so obtained is the area of a rectangle, then find the possible length and breadth of the rectangle
Answers
Answered by
5
Step-by-step explanation:
Let f(x) = (m + 3)(m⁴ - 16) = m⁵ - 16m + 3m⁴ - 48.
Let g(x) = m³ + 2m² + 4m + 8.
Long Division Method:
m³ + 2m² + 4m + 8) m⁵ + 3m⁴ + 0m³ + 0m² - 16m - 48(m² + m - 6
m⁵ + 2m⁴ + 4m³ + 8m²
---------------------------------------------------
m⁴ - 4m³ - 8m² - 16m - 48
m⁴ + 2m³ + 4m² + 8m
----------------------------------------------------
-6m³ - 12m² - 24m - 48
-6m³ - 12m² - 24m - 48
---------------------------------------------------
0
∴ Quotient = m² + m - 6, Remainder = 0.
Factors of m² + m - 6:
m² + m - 6
m² + 3m - 2m - 6
m(m + 3) - 2(m + 3)
(m - 2)(m + 3).
Therefore:
Area of rectangle = m² + m - 6.
Length = (m - 2)
Breadth = (m + 3).
Hope it helps!
Let f(x) = (m + 3)(m⁴ - 16) = m⁵ - 16m + 3m⁴ - 48.
Let g(x) = m³ + 2m² + 4m + 8.
Long Division Method:
m³ + 2m² + 4m + 8) m⁵ + 3m⁴ + 0m³ + 0m² - 16m - 48(m² + m - 6
m⁵ + 2m⁴ + 4m³ + 8m²
---------------------------------------------------
m⁴ - 4m³ - 8m² - 16m - 48
m⁴ + 2m³ + 4m² + 8m
----------------------------------------------------
-6m³ - 12m² - 24m - 48
-6m³ - 12m² - 24m - 48
---------------------------------------------------
0
∴ Quotient = m² + m - 6, Remainder = 0.
Factors of m² + m - 6:
m² + m - 6
m² + 3m - 2m - 6
m(m + 3) - 2(m + 3)
(m - 2)(m + 3).
Therefore:
Area of rectangle = m² + m - 6.
Length = (m - 2)
Breadth = (m + 3).
Hope it helps!
Attachments:
anvesha91:
i can't understand
Answered by
2
The answer is explained below
Attachments:
Similar questions