Divide the first polynomial by the binomial and hence find the quotient and remainder.
y⁵ + 5y³ - 8y² + 6y - 16 by y² + 2
Answers
Answered by
2
y
5
+5y
3
−8y
2
+6y−16
=y
3
+3y−8
Step-by-step explanation:
\frac{y^5+5y^3-8y^2+6y-16}{y^2+2}
y
2
+2
y
5
+5y
3
−8y
2
+6y−16
Rearrange the terms of numerator of given fraction
\frac{y^5+5y^3+6y-8y^2+16}{y^2+2}
y
2
+2
y
5
+5y
3
+6y−8y
2
+16
\frac{y(y^4+5y^2+6)-8(y^2+2)}{y^2+2}
y
2
+2
y(y
4
+5y
2
+6)−8(y
2
+2)
\frac{y(y^4+2y^2+3y^2+6)-8(y^2+2)}{y^2+2}
y
2
+2
y(y
4
+2y
2
+3y
2
+6)−8(y
2
+2)
\frac{y((y^2(y^2+2)+3(y^2+2))-8(y^2+2)}{y^2+2}
y
2
+2
y((y
2
(y
2
+2)+3(y
2
+2))−8(y
2
+2)
\frac{y(y^2+2)(y^2+3)-8(y^2+2)}{y^2+2}
y
2
+2
y(y
2
+2)(y
2
+3)−8(y
2
+2)
\frac{(y^2+2)(y(y^2+3)-8)}{y^2+2}
y
2
+2
(y
2
+2)(y(y
2
+3)−8)
y(y^2+3)-8y(y
2
+3)−8
y^3+3y-8y
3
+3y−8
Hence,\frac{y^5+5y^3-8y^2+6y-16}{y^2+2}=y^3+3y-8
y
2
+2
y
5
+5y
3
−8y
2
+6y−16
=y
3
+3y−8
Similar questions