Math, asked by rohan02061999, 7 hours ago

Divide the number 36 into two factors such that the sum of their squares is the least possible.​

Answers

Answered by ayyyuuuh17
7

ಠ_ಠ

36=1×36

36=1×36     =2×18

36=1×36     =2×18     =3×12

36=1×36     =2×18     =3×12     =4×9

36=1×36     =2×18     =3×12     =4×9     =6×6

36=1×36     =2×18     =3×12     =4×9     =6×61 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12

36=1×36     =2×18     =3×12     =4×9     =6×61 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12Here, 12<13<15<20<37

36=1×36     =2×18     =3×12     =4×9     =6×61 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12Here, 12<13<15<20<37∴(6,6) 

36=1×36     =2×18     =3×12     =4×9     =6×61 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12Here, 12<13<15<20<37∴(6,6) None of These

Please Mark as brainlist Answer

Answered by mrnickname50
8

\huge[Answer]

Plz mark brainlist *.*

Correct option is D

DNone of these

DNone of these36=1×36

DNone of these36=1×36     =2×18

DNone of these36=1×36     =2×18     =3×12

DNone of these36=1×36     =2×18     =3×12     =4×9

DNone of these36=1×36     =2×18     =3×12     =4×9     =6×6

DNone of these36=1×36     =2×18     =3×12     =4×9     =6×61 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12

DNone of these36=1×36     =2×18     =3×12     =4×9     =6×61 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12Here, 12<13<15<20<37

DNone of these36=1×36     =2×18     =3×12     =4×9     =6×61 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12Here, 12<13<15<20<37∴(6,6) 

DNone of these36=1×36     =2×18     =3×12     =4×9     =6×61 + 36 = 37,  2 + 18 = 20,  3 + 12 = 15,  4 + 9 = 13,  6 + 6 = 12Here, 12<13<15<20<37∴(6,6) None of These

Similar questions