Divide the number 36 into two factors such that the sum of their squares is the least possible.
Answers
ಠ_ಠ
36=1×36
36=1×36 =2×18
36=1×36 =2×18 =3×12
36=1×36 =2×18 =3×12 =4×9
36=1×36 =2×18 =3×12 =4×9 =6×6
36=1×36 =2×18 =3×12 =4×9 =6×61 + 36 = 37, 2 + 18 = 20, 3 + 12 = 15, 4 + 9 = 13, 6 + 6 = 12
36=1×36 =2×18 =3×12 =4×9 =6×61 + 36 = 37, 2 + 18 = 20, 3 + 12 = 15, 4 + 9 = 13, 6 + 6 = 12Here, 12<13<15<20<37
36=1×36 =2×18 =3×12 =4×9 =6×61 + 36 = 37, 2 + 18 = 20, 3 + 12 = 15, 4 + 9 = 13, 6 + 6 = 12Here, 12<13<15<20<37∴(6,6)
36=1×36 =2×18 =3×12 =4×9 =6×61 + 36 = 37, 2 + 18 = 20, 3 + 12 = 15, 4 + 9 = 13, 6 + 6 = 12Here, 12<13<15<20<37∴(6,6) None of These
Please Mark as brainlist Answer
Plz mark brainlist *.*
Correct option is D
DNone of these
DNone of these36=1×36
DNone of these36=1×36 =2×18
DNone of these36=1×36 =2×18 =3×12
DNone of these36=1×36 =2×18 =3×12 =4×9
DNone of these36=1×36 =2×18 =3×12 =4×9 =6×6
DNone of these36=1×36 =2×18 =3×12 =4×9 =6×61 + 36 = 37, 2 + 18 = 20, 3 + 12 = 15, 4 + 9 = 13, 6 + 6 = 12
DNone of these36=1×36 =2×18 =3×12 =4×9 =6×61 + 36 = 37, 2 + 18 = 20, 3 + 12 = 15, 4 + 9 = 13, 6 + 6 = 12Here, 12<13<15<20<37
DNone of these36=1×36 =2×18 =3×12 =4×9 =6×61 + 36 = 37, 2 + 18 = 20, 3 + 12 = 15, 4 + 9 = 13, 6 + 6 = 12Here, 12<13<15<20<37∴(6,6)
DNone of these36=1×36 =2×18 =3×12 =4×9 =6×61 + 36 = 37, 2 + 18 = 20, 3 + 12 = 15, 4 + 9 = 13, 6 + 6 = 12Here, 12<13<15<20<37∴(6,6) None of These