divide the polynomial 3x⁴-:4x³-3x-1 by x-1
Answers
Answer:
x−13x 4−4x 3 −3x−1
=−5
Step-by-step explanation:
Let p(x) = 3x⁴-4x³-3x-1 and g(x) = x-1,
x-1) 3x⁴-4x³+0-3x-1(3x³-x²-x-4
3x⁴ -3x³
___________________
-x³ + 0 -3x. -x³ + x²
___________________
-x² - 3x - 1
-x² + x
___________________
- 4x - -4x + 4
____________________
Remainder (-5)
Dividend = 3x⁴-4x³-3x-1,
Divisor = x-1,
Quotient = 3x³-x²-x-4,
Remainder = -5
Therefore,
frac{3x^{4}-4x^{3}-3x-1 }{x-1}= -5 x−13x 4 −4x −3x−1
=−5
How to solve ?
Since,the given polynomial having degree 4 and we have to divide it by x-1 having degree 1 so,in order to make the same degree of polynomial x-1 must be Multiply with degree 3
=>( x-1 )x³= x⁴-x³
Now,to make the coefficient same Multiply it with 3
=> 3x⁴-3x³
Now,divide the given polynomial with 3x⁴-3x³
=> 3x⁴-4x³
=> 3x⁴-3x³
=>
__________
-x³-3x-1
Now ,again Multiply x-1 with -x² to make the degree of 3.
=> -x²(x-1)= -x³+x²
=> -x³-3x-1
=> -x³+x²
=>
__________
-x²-3x-1
Now ,divide the x-1 with -x in order to make the degree of 2.
=> -x(x-1)= -x²+x
=>-x²-3x-1
=>-x²+x
=>(+)(-)
________
-4x-1
Now, Multiply x-1 with -4
=> -4x-1
=>-4x+4
=>(+)(-)
______
-5
Therefore, Remainder = -5
Quotient = 3x³-x²-x-4
Dividend = 3x⁴-4x³-3x-1
Divisor= x-1
Now, check by using division algorithm:
Dividend= Divisor x quotient+remainder
3x⁴-4x³-3x-1 = (x-1)(3x³-x²-x-4)-5
= 3x⁴-x³-x²-4x-3x³+x²+x+4-5
= 3x⁴-4x³-4x+x+4-5
= 3x³-4x³-3x-1