Math, asked by toiyaker409, 1 month ago

divide the polynomial f(x)=5x³+10x²-30x-15 by the polynomial g(x)=x²+1+x and hence, find the quotation and remainder​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given polynomial is

\rm :\longmapsto\:f(x) =  {5x}^{3} +  {10x}^{2} - 30x - 15

Divisor is

\rm :\longmapsto\:g(x) =  {x}^{2} + x + 1

So, using Long Division Method, we have

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{}}}&{\underline{\sf{\:\: 5x + 5\:\:}}}\\ {\underline{\sf{ {x}^{2} + x + 1 }}}& {\sf{\: {5x}^{3} + {10x}^{2} - 30x - 15 \:\:}} \\{\sf{}}& \underline{\sf{\:\:- 5{x}^{3} - 5{x}^{2} - 5x \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:}} \\ {{\sf{}}}& {\sf{\: \:  \:  \:  \:  \:  \:  \: 5{x}^{2} - 35x - 15  \:   }} \\{\sf{}}& \underline{\sf{\:\:  \:  \:  \:   \:  \:  \:  \:  \:  - 5{x}^{2}  -5x - 5  \:  \:  \:  \:  \:  \: \:\:}} \\ {\underline{\sf{}}}& {\sf{\: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: - 40x - 20 \:\:}}   \end{array}\end{gathered}\end{gathered}\end{gathered}

Thus,

\rm :\longmapsto\:Quotient = 5x + 5

and

\rm :\longmapsto\:Remainder =  - 40x - 20

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Verification :-

Dividend is

\rm :\longmapsto\:f(x)=  {5x}^{3} +  {10x}^{2} - 30x - 15

Divisor is

\rm :\longmapsto\:g(x) =  {x}^{2} + x + 1

Now, Consider

\red{\rm :\longmapsto\:Divisor \times Quotient + Remainder}

\rm \:  =  \: (5x + 5)( {x}^{2} + x + 1) - 40x - 20

\rm \:  =  \:  {5x}^{3} +  {5x}^{2} + 5x +  {5x}^{2} + 5x + 5   - 40x - 20

\rm \:  =  \:  {5x}^{3} +  {10x}^{2} - 30x - 15

Hence, Verified

Similar questions