Math, asked by Anonymous, 5 months ago

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in
each of the following :
(i) p(x) = x³ – 3x² + 5x – 3, g(x) = x² – 2

(ii) p(x) = x⁴ – 3x² + 4x + 5, g(x) = x² + 1 – x

(iii) p(x) = x⁴ – 5x + 6, g(x) = 2 – x²​

Answers

Answered by Anonymous
13

Step-by-step explanation:

______________________________

{\bigstar\Huge{\boxed{\tt {\color{red}{Question}}}}}\bigstar

\hookrightarrow Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in

each of the following :

(i) p(x) = x³ – 3x² + 5x – 3, g(x) = x² – 2.

(ii) p(x) = x⁴ – 3x² + 4x + 5, g(x) = x² + 1 – x.

(iii) p(x) = x⁴ – 5x + 6, g(x) = 2 – x².

____________________________

{\bigstar\Huge{\boxed{\tt {\color{red}{Answer}}}}}\bigstar

\hookrightarrow 1). p(x) = x³ – 3x² + 5x – 3, g(x) = x² – 2.

\hookrightarrow ● Quotient = x - 3.

\hookrightarrow ● Remainder = 7x - 9.

_____________________________

\hookrightarrow 2). p(x) = x⁴ – 3x² + 4x + 5, g(x) = x² + 1 – x.

\hookrightarrow ● Quotient = x² + x - 3.

\hookrightarrow ● Remainder = 8.

____________________________

\hookrightarrow 3). p(x) = x⁴ – 5x + 6, g(x) = 2 – x².

\hookrightarrow ● Quotient = -x² - 2.

\hookrightarrow ● Remainder = -5x + 10.

______________________________

Answered by Anonymous
62

(i) p(x) = x³ – 3x² + 5x – 3, g(x) = x² – 2

Solution:-

\begin{array}{c|c|c}\sf x^2 - 2&\sf x^3 - 3x^2+5x-3&\sf x+3\\&\sf \qquad x^3 \quad\quad \:  \: -2x\qquad\qquad&\\&\dfrac{\qquad \:  \:  \:  \: -\ \:\:\quad\qquad\:\:\:+}{\sf \qquad\qquad\qquad- 3x^2  + 7x - 3}\qquad\qquad\quad&\\&\sf   - 3x^2 \qquad \:\:\:\:  + 6&\\&\sf\dfrac{ +  \qquad\qquad \:\:\:\:\:\:  - }{\qquad\qquad 7x - 9}\end{array}

Remainder = 7x - 9

Quotient = x - 3

______________________________________

(ii) p(x) = x⁴ – 3x² + 4x + 5, g(x) = x² + 1 – x

Solution:-

\begin{array}{c|c|c}\sf x^2 - x + 1&\sf x^4\qquad - 3x^2+4x + 5&\sf x^2 + x - 3\\&\sf \qquad x^4 - x^3   + x^2\qquad\qquad\qquad\quad&\\&\dfrac{\qquad-\quad + \quad-\qquad}{\sf \qquad\qquad\qquad x^3- 4x^2  + 4x  + 5}\qquad\qquad\quad&\\&\sf x^3- x^2 + x  \:  \:  \:  \:  \:  \:  \: &\\&\sf\dfrac{ +  \quad + \quad  - \qquad}{ - 3x^2 + 3x + 5}&\\&\sf  - 3x^2 + 3x - 3&\\&\dfrac{ +\quad  -  \quad + }{\sf \qquad\qquad8}\end{array}

Remainder = 8

Quotient = x² + x - 3

______________________________________

(iii) p(x) = x⁴ – 5x + 6, g(x) = 2 – x²

\begin{array}{c|c|c}\sf - x^2 + 2&\sf x^4 \qquad\qquad\:\:\:- 5x+6&\sf -x^2 - 2\\&\sf \qquad  \:  \:  x^4 \quad\quad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  -2x^2\qquad\qquad&\\&\dfrac{ \:  \:  \:  \:  \:  \:  \:  \:  \:    -\ \:\:\quad\qquad\:\:\ \: \:  \:  \: +}{\sf \qquad\qquad\qquad 2x^2- 5x +6 }\qquad\qquad\quad&\\&\sf  \:  \:  \:  \:  \:  2x^2 \qquad + 4 &\\&\sf\dfrac{ -   \qquad \:  \:  \: - }{ \qquad \qquad5x + 2}\end{array}

Remainder = 5x + 2

Quotient = -x² - 2

______________________________________

Similar questions