Math, asked by abhiahlawat, 1 year ago

Divide the polynomial p(X)=x4-3x square + 4 x + 5 by the polynomial g(X)=X square + 1 - X and find the quotient and remainder also verify division algorithm

Answers

Answered by dtrikha
35
the answer may be this
Attachments:
Answered by ashishks1912
12

The quotient to the given polynomials is x^2+x-3  and remainder is 8

Hence Division algorithm is verified

Step-by-step explanation:

Given polynomials are p(X)=x^4-3x^2+4x+5 and

g(X)=x^2+1-x

Rewritting the g(X) as x^2-x+1

Given that divide the polynomial p(X) by the polynomial g(X)

To find the quotient and remainder also verify division algorithm :

                       x^2+x-3

                    _________________________

x^2-x+1     )  x^4+0x^3-3x^2+4x+5  

                                 x^4-x^3+x^2

                                __ _(-)__(+)__(-)______________

                                        x^3-4x^2+4x

                                        x^3-x^2+x

                                   _(-)__(+)__(-)____________

                                             -3x^2+3x+5

                                             -3x^2+3x-3

                                  ____(+)___(-)__(+)_________

                                                                 8

                                   ____________________________

Therefore the quotient is x^2+x-3  and remainder is 8

Now verify the Division algorithm :

Dividend=quotient\times divisor+remainder

p(X)=q(X)\times g(X)+r(X)

Substitute the values we get

  • x^4-3x^2+4x+5=(x^2-x+1)\times (x^2+x-3)+8
  • =x^2(x^2)+x^2(x)+x^2(-3)-x(x^2)-x(x)-x(-3)+1(x^2)+1(x)+1(-3)+8
  • =x^4+x^3-3x^2-x^3-x^2+3x+x^2+x-3+8 ( by using the propertya^m.a^n=a^{m+n} )
  • =x^4-3x^2+4x+5=LHS ( by adding the like terms )

Therefore LHS=RHS

Therefore Division algorithm is verified

Similar questions