Divide the polynomial x4-9x2+9 by the polynomial x2-3x and verify the division algorithm
mohana7:
quotient of this division is x2 + 3x
Answers
Answered by
90
On, Dividing p(x) = x⁴ - 9x² + 9 by g(x) = x² - 3x
We get q(x) = x² + 3x and r(x) = 9
Then Division algorithm,
p(x) = q(x) × g(x) + r(x)
x⁴ - 9x² + 9 = (x² + 3x)(x² - 3x) + 9
x⁴ - 9x² + 9 = x⁴ - 3x³ + 3x³ - 9x² + 9
x⁴ - 9x² + 9 = x⁴ - 9x² + 9
LHS = RHS
Hence Verified //
_________________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
We get q(x) = x² + 3x and r(x) = 9
Then Division algorithm,
p(x) = q(x) × g(x) + r(x)
x⁴ - 9x² + 9 = (x² + 3x)(x² - 3x) + 9
x⁴ - 9x² + 9 = x⁴ - 3x³ + 3x³ - 9x² + 9
x⁴ - 9x² + 9 = x⁴ - 9x² + 9
LHS = RHS
Hence Verified //
_________________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Answered by
15
Answer:
On, Dividing p(x) = x⁴ - 9x² + 9 by g(x) = x² - 3x
We get q(x) = x² + 3x and r(x) = 9
Then Division algorithm,
p(x) = q(x) × g(x) + r(x)
x⁴ - 9x² + 9 = (x² + 3x)(x² - 3x) + 9
x⁴ - 9x² + 9 = x⁴ - 3x³ + 3x³ - 9x² + 9
x⁴ - 9x² + 9 = x⁴ - 9x² + 9
LHS = RHS
Hence Verified
Similar questions