Math, asked by zas42, 11 months ago

divide the x4+2x3+3x2+2x+30 by x2-2x+2 and verify the division algori​

Answers

Answered by manaswini2785
1

Answer:

here is ur answer

hope it helps you

mark it as brainliest answer

thank you.....

Attachments:
Answered by ashishks1912
0

Given that divide the polynomial x^4+2x^3+3x^2+2x+30 by x^2-2x+2

To verify :

The division algori​thm for the given polynomial.

Solution :

First divide the given polynomial

                                    x^2+4x+9

                         ____________________

      x^2-2x+2    ) x^4+2x^3+3x^2+2x+30

                               x^4-2x^3+2x^2

                          __(-)__(+)___(-)___________

                                        4x^3+x^2+2x

                                       4x^3-8x^2+8x

                       _______(-)__(+)___(-)_________

                                                 9x^2-6x+30

                                                 9x^2-18x+18

                                        ____(-)___(+)__(-)_______

                                                         12x+12

                                         _____________________

From this we get the quotient is x^2+4x+9 and remainder is 12x+12

Now verify the Division Algorithm :

The formula for Division Algorithm is

Dividend=divisor\times quotient+remainder

Now substitute the values in the formula to verify we get

x^4+2x^3+3x^2+2x+30=(x^2-2x+2)\times (x^2+4x+9)+(12x+12)

By using the Distributive property a(x+y+z)=ax+ay+az :

=x^2(x^2)+x^2(4x)+x^2(9)-2x(x^2)-2x(4x)-2x(9)+2(x^2)+2(4x)+2(9)+12x+12

By using the formula a^m.a^n=a^{m+n} :

=x^{2+2}+4x^{2+1}+9x^2-2x^{1+2}-8x^{1+1}-18x+2x^2+8x+18+12x+12  

=x^4+4x^3+9x^2-2x^3-8x^2-18x+2x^2+8x+18+12x+12

Now  adding the like terms.

=x^4+2x^3+3x^2+2x+30

Therefore x^4+2x^3+3x^2+2x+30=x^4+2x^3+3x^2+2x+30

Hence the Division Algorithm is verified .

                       

Similar questions